Thu gọn đa thức sau:
M = \(\left(\frac{-3}{5}x^2y\right).\left(\frac{-10}{3}xy^2\right)+\left(-xy\right)\left(x^2y^2\right)\)
Thu gọn biểu thức
\(A=\frac{-5\left(xy\right)^4.x.\frac{1}{4}\left(-xy\right)^5}{\left(\frac{-2}{5}y\right)^3\left(x^2y\right)^5.5x}\)
Bài 1: Thu gọn
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)
d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)
e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)
f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)
g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)
h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)
i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)
k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)
n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)
m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)
p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)
Bài 1:
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
= \(\left(\frac{1}{5}-3\right)x^4y^3\)
= \(-\frac{14}{5}x^4y^3.\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
= \(\left(5-\frac{1}{4}\right)x^2y^5\)
= \(\frac{19}{4}x^2y^5.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!
thu gọn đơn thức, tìm bậc, hệ số.
A=\(2x^2y^2\frac{1}{4}xy\left(-3xy\right)\); B=\(\left(-\frac{3}{4}x^5y^4\right).\left(xy^2\right).\left(-\frac{8}{9}x^2y^5\right)\)
Bài 1: Thu gọn các đơn thức, xác định hệ số, phần biế, tìm bậc của các đơn thức sau:
a, \(A=\frac{2}{3}x^2y.\left(-\frac{3}{4}y\right).\left(-x^2\right)\)
b, \(C=0,12y^2.\left(-1\frac{1}{3}xy\right)^2.\left(-xy\right)^3\)
c, \(E=1,2.\left(-xy^2\right)^3.\left(-\frac{3}{5}y^2\right).\left(-0,5x^2y^3\right)^2\)
d, \(B=\frac{11}{12}\left(y^2\right)^3.\left(-\frac{1}{33}x^3\right).\left(-x\right)^2\)
e, \(D=2x^3y.\left(-\frac{1}{2}xy\right)^3.x^2y\)
f, \(F=-2\frac{1}{3}x^3z^2.\left(\frac{1}{3}xy^2z\right)^2.\left(6xyz\right)\)
Thu gọn các đơn thức sau rồi chỉ ra phần hệ số, phần biến và bậc của nó:
a) \(\left(2\frac{1}{3}x^2y^3z\right)^{10}.\left(-\frac{3}{7}x^5y^4z^2\right)^{10}.axyz\)(a là hằng số)
b) \(1,25x^2y.\left(-\frac{5}{6}xy\right)^0.\left(-2\frac{1}{2}xy\right)\)
a) \(\left(2\frac{1}{3}x^2y^3z\right)^{10}.\left(\frac{-3}{7}x^5y^4z^2\right)^{10}.axyz\)
=\(\left(2\frac{1}{3}x^2y^3z.\frac{-3}{7}x^5y^4z^2\right)^{10}.axyz\)
=\(\left(\frac{7}{3}.\frac{-3}{7}x^2.x^5.y^3.y^4.z.z^2\right)^{10}.axyz\)
=\(\left(-1.x^7y^7z^3\right)^{10}.axyz\)
=\(x^{70}.y^{70}z^{30}.axyz\)
=\(a.x^{71}.y^{71}.z^{31}\)
PHS: a
PB: x71.y71.z31
Bậc: 173
Rút gọn rồi tính giá trị của biểu thức khi x=1;y=\(-3\frac{1}{4}\)
\(\frac{\left(x-y\right)^2+xy}{\left(x+y\right)^2-xy}\)\(\left[1:\frac{x^5+y^5+x^3y^2+x^2y^3}{\left(x^3y^3\right)\left(x^3+y^3+x^2y+xy^2\right)}\right]\)
Cho các biểu thức sau:
\(A=0,25x^2y^3-0,5x^2y^3+4x^2y^3\)
\(B=1,5(xy^2)^3x^2y-2(xy)^3x^2y4+[0,\left(3\right)x^2y]^2.xy^5\)
\(C=(0,5.xy).\left(-\frac{1}{3}xy^2\right)\)
\(D=\left(\frac{\sqrt{2}}{3}x^3y^5\right).0,6\left(xy^2\right)\)
a) Thu gọn các biểu thức trên
b) Chỉ ra các đơn thức đồng dạng
c) Tính giá trị các đơn thức sau khi thu gọn tại x=\(\frac{1}{3}\)và y = -1
1.cho đa thức A=-4x\(^5y^3+x^4y^2-3x^2y^3z^2+4x^5y^3-x^4y^3+x^2y^3z^2-2y^4\)
a.thu gọn rồi tìm bậc đa thức A
b.tìm đa thức B biết rằng B-2x\(^2y^3z^2+\frac{2}{3}y^4-\frac{1}{5}x^4y^3=A\)
2.thu gọn các đơn thức sau rồi chỉ rõ hệ số phần biến và tìm bậc
a.A=x\(^3.\left(\frac{-5}{4}x^2y\right).\left(\frac{2}{5}x^3y^4\right)\)
b.B=\(\left(\frac{-3}{4}x^5y^4\right).\left(xy^2\right).\left(\frac{-8}{9}x^2y^5\right)\)
Thu gọn đơn thức sau:
\(\frac{1}{2}xy^4z^3.\left(_-\frac{1}{5}x^2y\right)^2.\left(-x\right)^5\)