Tìm giá trị nhỏ nhất m của hàm số f(x) = \(\frac{1}{x}\)+\(\frac{1}{1-x}\)với 0 < x < 1
Tìm giá trị nhỏ nhất của hàm số y:\(\frac{2}{1-x}+x\)với 0<x<1
\(f\left(x\right)=\dfrac{4}{x}+\dfrac{x-1+1}{1-x}=\dfrac{4}{x}+\dfrac{1}{1-x}-1\)
\(f\left(x\right)\ge\dfrac{\left(2+1\right)^2}{x+1-x}-1=8\)
\(f\left(x\right)_{min}=8\) khi \(x=\dfrac{2}{3}\)
tìm giá trị nhỏ nhất m của hàm số f(x)=\(\frac{x^4+3}{x}\) với x>0
f(x) = x3 +3/x = x3 + 1/x +1/x +1/x
cô si 4 số làm mất x là xong
tìm giá trị nhỏ nhất của hàm số: \(y=\frac{2}{1-x}+\frac{1}{x}\) với 0<x<1
Cho hàm số f(x) = x - m 2 + m x + 1 với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn [0; 1] bằng – 2.
A. m= 1
B. m= -2
C. m= -1
D. m= -1 hoặc m= 2
Đạo hàm f'(x) = m 2 - m + 1 ( x + 1 ) 2 > 0, ∀ x ∈ [ 0 ; 1 ]
Suy ra hàm số f(x) đồng biến trên [0; 1] nên min f(x) = f(0) = -m2+m
Theo bài ta có:
-m2+ m= -2 nên m= -1 hoặc m= 2.
Chọn D.
Tìm giá trị nhỏ nhất của hàm số \(y=\frac{4}{x}+\frac{9}{1-x}\) với 0<x<1.
Tìm giá trị lớn nhất của hàm số f(x)=\(\frac{x}{x^2+2014x+1}\)(Với x>0)
Ta có f(x) đạt giá trị lớn nhất khi \(\frac{1}{f\left(x\right)}\) đạt giá trị nhỏ nhất.
Xét \(\frac{1}{f\left(x\right)}=\frac{x^2+2014x+1}{x}=x+\frac{1}{x}+2014\ge2\sqrt{x.\frac{1}{x}}+2014=2016\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x>0\\x=\frac{1}{x}\end{cases}}\Leftrightarrow x=1\)
\(Min\)\(\frac{1}{f\left(x\right)}=2016\Leftrightarrow x=1\)
Vậy \(Max\)\(f\left(x\right)=\frac{1}{2016}\Leftrightarrow x=1\)
tìm giá trị nhỏ nhất của hàm số sau: f(x)=\(x^2+2x+\frac{16}{x+1}\)(x > -1)
Tìm giá trị nhỏ nhất của hàm số f(x)=x+\(\frac{1}{x}\) với x\(\ge\)2
Cho hàm số f(x) liên tục trên (0;+ ∞ ) thỏa mãn 3x.f(x) - x 2 f ' ( x ) = 2 f 2 ( x ) , với f(x) ≠ 0, ∀ x ∈ (0;+ ∞ ) và f(1) = 1 3 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [1;2]. Tính M + m.
A. 9 10
B. 21 10
C. 7 3
D. 5 3
Chọn D
Ta có 3x.f(x) - x 2 f ' ( x ) = 2 f 2 ( x )
Thay x = 1 vào ta được vì f(1) = 1 3 nên suy ra C = 2
Nên Ta có:
Khi đó, f(x) đồng biến trên [1;2]
Suy ra
Suy ra