Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
EDM Gaming
Xem chi tiết
Minz Ank
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 1 2022 lúc 10:30

c: Xét ΔCDA có CH là đường phân giác

nên CH/HA=CD/HD

mà CH>CD

nên HA>HD

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 1 2020 lúc 14:02

a, Ta có ∆ABE = ∆ADF(g.c.g) => AE = AF

b, Ta có: ∆AKF ~ ∆CAF ( F ^ chung và  F A K ^ = F C A ^ = 45 0 )

=> A F H F = C F A F =>  A F 2 = K F . C F

c, S A E F = 93 2 c m 2

d, Ta có: AE.AJ=AF.AJ=AD.FJ

=>  A E . A J F J = AD không đổi

Nguyễn Hương Giang
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Hải Anh Bùi
Xem chi tiết
Hoàng Long Đặng
Xem chi tiết
Phùng khánh my
29 tháng 11 2023 lúc 12:28

Để chứng minh a là trung điểm của HK, ta cần chứng minh rằng a là trung điểm của HK.

 

Gọi a là trung điểm của HK, ta cần chứng minh rằng HA = AK.

 

Ta có:

- Tam giác ABC là tam giác cân tại A, nên AH là đường cao của tam giác ABC và cắt BC thành hai phần bằng nhau. Vậy H là trung điểm của BC.

- Ta biết MN là đường thẳng vuông góc với BC, nên HK là đường cao của tam giác MNK và cắt MN thành hai phần bằng nhau. Vậy K là trung điểm của MN.

 

Vậy ta có AH = HK và AK là đường trung bình của tam giác AMN.

 

Ta cần chứng minh AK = HA.

 

Gọi P là giao điểm của AK và HA.

 

Ta có:

- Ta biết AH = HK, nên tam giác AHK là tam giác cân tại H. Vậy góc AHK = góc AKH.

- Ta biết MN là đường thẳng vuông góc với BC, nên tam giác MNK là tam giác vuông tại K. Vậy góc MNK = 90 độ.

- Ta biết AK là đường trung bình của tam giác AMN, nên góc AKH = góc MNK.

 

Từ các quan sát trên, ta có:

góc AHK = góc AKH = góc MNK = 90 độ.

 

Vậy tứ giác AKHG là hình chữ nhật với AK = HG.

 

Vậy ta đã chứng minh được a là trung điểm của HK.

Trương Thị Như Ngọc
Xem chi tiết
Nguyễn Quỳnh Anh
Xem chi tiết