Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Phèn
Xem chi tiết
Dương Phèn
Xem chi tiết
Nguyễn Phú Lương
Xem chi tiết
Edogawa Conan
3 tháng 8 2021 lúc 9:58

a)Từ A kẻ đường thẳng đi qua M cắt BC tại H

Ta có:\(\widehat{BAM}+\widehat{ABM}=\widehat{BHM}\) (tính chất góc ngoài của ΔABM)

Ta có:\(\widehat{MAC}+\widehat{ACM}=\widehat{CMH}\) (tính chất góc ngoài của ΔACM)

\(\Rightarrow\widehat{BAM}+\widehat{ABM}+\widehat{MAC}+\widehat{ACM}=\widehat{CMH}+\widehat{BHM}\)

\(\Leftrightarrow\widehat{BAC}+\widehat{ABM}+\widehat{ACM}=\widehat{BMC}\left(đpcm\right)\)

Nguyễn Phú Lương
Xem chi tiết
ASDFA
Xem chi tiết
Trần Trúc Quỳnh
Xem chi tiết
Nguyễn Ngọc Bảo Minh
13 tháng 5 2021 lúc 21:39

học lớp 7a k

Khách vãng lai đã xóa
Hà Anh Thư
14 tháng 5 2021 lúc 9:54

7A1 à?

Khách vãng lai đã xóa

A M B C 15 15 30

Bài làm

a,b) Ta có: Tam giác ABC cân tại A

=> \(\widehat{ABC}=\widehat{ACB}\)

hay \(\widehat{ABM}+\widehat{MBC}=\widehat{ACM}+\widehat{MCB}\)

Mà \(\widehat{ABM}=\widehat{ACM}=15^0\)

=> \(\widehat{MBC}=\widehat{MCB}\)

=> Tam giác MBC cân tại M

=> MB = MC

=>  M thuộc trung trực của BC

Hay AM là trung trực của tam giác ABC

Mà tam giác ABC cân tại A

=> AM vừa là trung trực, vừa là phân giác

=> \(\widehat{BAM}=\widehat{MAC}=\frac{\widehat{BAC}}{2}=15^0\)

Mà \(\widehat{MAB}=\widehat{MBA}=15^0\)=> Tam giác MAB cân tại M => AM = MB (1)

Và \(\widehat{MAC}=\widehat{MCA}=15^0\)=> Tam giác MAC cân tại M => AM = MC (2)

Từ (1) và (2) => MA = MB = MC (đpcm) 

~ Mình làm gộp câu a và b đó ~

c) Ta có: M cách đều ba điểm A, B, C 

do AM = MB = MC

Theo tính chất của đường trung trực, giao điểm của ba đường trung trực cách đều ba đỉnh.

Do đó, M là giao điểm của ba đường trung trực của tam giác ABC (đpcm) 

Khách vãng lai đã xóa
Army
Xem chi tiết
nguyễn thị phương thảo
Xem chi tiết
Phạm Ngọc Minh Tú
12 tháng 8 2016 lúc 20:11
bn tự vẽ hình nhahihi
Xét △ABM có BME là góc ngoài tại đỉnh M nên BME=MBA+MAB

 CME=MAC+MCA

Vậy BME+CME=MBA+MAB+MAC+MCA

-> BMC=MBA+BAC+MCA

 
Phạm Ngọc Minh Tú
12 tháng 8 2016 lúc 20:12

kì , mk lm mà sao nó k ra j hết?????

Phạm Ngọc Minh Tú
12 tháng 8 2016 lúc 20:17

mk lm lai nha

xét tam giác ABM có BME tại đỉnh M nên BME=MBA+MAB

CME=MAC+MCA

BME+CME=MBA+MAB+MAC+MCA

---->BMC=ABM+ACM+BAC(đpcm)

nguyễn ngọc linh
Xem chi tiết
nguyễn ngọc linh
25 tháng 1 2018 lúc 11:10

Helppppppppppppppppppppppppppppppppppppppppppp me

vietphuonghat76 Trinh
11 tháng 3 2018 lúc 20:26

câu a: xét \(\Delta AMB\)  và \(\Delta AMC\)có :

AB=AC(gt)

MB=MC(tam giác MBC cân)

AM là cạnh chung

\(\Rightarrow\Delta AMB=\Delta AMC\)(C.C.C)

\(\Rightarrow\)\(\widehat{BAM}=\widehat{CAM}\)

Vậy AM là tia phân giác\(\widehat{BAC}\)

B)

góc ABM= góc ACM= \(\frac{180º-20º}{2}-60º=20º\)

Vậy \(\widehat{ABM}=\widehat{ACM}=\widehat{BAC}\)