Tìm m thuộc Z để: -13/m + 7/m là số nguyên
Tìm n+4/n+1(n thuộc Z)
a)Tìm điều kiện của n để M là một phân số
b)Tìm phân số M khi n=0,n=3,n=-7
c)Tìm n thuộc Z để M nhận giá trị là mottj số nguyên
\(M=\frac{n+4}{n+1}\)
a)\(ĐK:n\ne-1\)
b)\(n=0\)
Thay n=0 vào M ta được:
\(M=\frac{0+4}{0+1}=4\)
\(n=3\)
Thay n=3 vào M ta được:
\(M=\frac{3+4}{3+1}=\frac{7}{4}\)
\(n=-7\)
Thay n=-7 vào M ta được:
\(M=\frac{-7+4}{-7+1}=\frac{-3}{-6}=\frac{1}{2}\)
c)\(M=\frac{n+4}{n+1}=\frac{\left(n+1\right)+3}{n+1}=1+\frac{3}{n+1}\)
Để M nguyên thì \(1+\frac{3}{n+1}\)nguyên
Mà \(1\in Z\)nên để \(1+\frac{3}{n+1}\)nguyên thì \(\frac{3}{n+1}\)nguyên
Để \(\frac{3}{n+1}\)nguyên thì \(3⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(3\right)\)
\(\Leftrightarrow n+1\in\left\{-3;-1;1;3\right\}\)
\(\Leftrightarrow n\in\left\{-4;-2;0;2\right\}\)(Đều thỏa mãn ĐK)
Vậy....
a, đk x khác -1
b, Với n = 0 => 0+4/0+1 = 4
Với n = 3 => \(\dfrac{3+4}{3+1}=\dfrac{7}{4}\)
Với n = -7 => \(\dfrac{-7+4}{-7+1}=-\dfrac{3}{-6}=\dfrac{1}{2}\)
c, \(\dfrac{n+4}{n+1}=\dfrac{n+1+3}{n+1}=1+\dfrac{3}{n+1}\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n+1 | 1 | -1 | 3 | -3 |
n | 0 | -2 | 2 | -4 |
Cho M = (√a + 6)/(√a + 1)= (√a +1 + 5)/(√a + 1)= 1 + 5/(√a + 1) a)Tìm a thuộc Z để M thuộc Z b) cmr với a = 4/9 thì là số nguyên c) Tìm các số hữu tỉ a để M là số nguyên
a: Để M là số nguyên thì 5 chia hết cho căn a+1
=>căn a+1 thuộc {1;5}
=>a thuộc {0;4}
b: Khi a=4/9 thì \(M=1+\dfrac{5}{\dfrac{2}{3}+1}=1+5:\dfrac{5}{3}=1+3=4\)
=>M là số nguyên
c: \(\sqrt{a}+1>=1\)
=>\(\dfrac{5}{\sqrt{a}+1}< =5\)
=>M<=6
\(1< =\dfrac{5}{\sqrt{a}+1}< =5\)
=>2<=M<=6
M=2 khi \(\dfrac{5}{\sqrt{a}+1}+1=2\)
=>\(\dfrac{5}{\sqrt{a}+1}=1\)
=>căn a+1=5
=>căn a=4
=>a=16
M=3 khi \(\dfrac{5}{\sqrt{a}+1}=2\)
=>căn a+1=5/2
=>căn a=3/2
=>a=9/4
M=4 thì \(\dfrac{5}{\sqrt{a}+1}=3\)
=>căn a+1=5/3
=>căn a=2/3
=>a=4/9
\(M=5\Leftrightarrow\dfrac{5}{\sqrt{a}+1}=4\)
=>căn a+1=5/4
=>căn a=1/4
=>a=1/16
tìm x thuộc Z để giá trị của biểu thức M=x^2 + 2x -13 / x-3 là một số nguyên
Bài 4: a) Tìm a thuộc Z để -13 / a + 7 / a là số nguyên.
b) Tìm b thuộc Z để 2b - 3 / 15 + b + 1 / 5 là số nguyên
a, \(=-\dfrac{6}{a}\Rightarrow a=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
b, \(\dfrac{2b-3}{15}+\dfrac{b+1}{5}=\dfrac{2b-3+3b+3}{15}=\dfrac{5b}{15}=\dfrac{b}{3}\Rightarrow b=\left\{\pm1;\pm3\right\}\)
bài 1 ) tìm 2 phân số có tử =9 biết giá trị của mỗi phân số lớn hơn -11/13 và nhỏ hơn -11/15
bài 2) cho M = x^2 - 5/x^2-2 (x thuộc Z). Tìm x thuộc Z để M là số nguyên
bài 3) cho 6 số nguyên dương a < b <c <d <m <n
chứng minh rằng: a+c+m/a+b+c+d+m+n < 1/2
cho phân số:
M=4/(n-2)(n-1) với n thuộc Z
a)với số nguyên n nào thì phân số M không tồn tại
b)viết tập hợp A các số nguyên n để phân số M tồn tại
c)tìm phân số M;biết n=-13;n=0;n=13
a) tìm x thuộc Z,để x+7 chia hết cho x (x khác 0)
b) tìm n thuộc Z,để cho 2n+1 là ước của 2n-1
c)Chứng tỏ tổng S chia hết cho 50
S=(x-1)+(x-3)+(x-5)+....+(x-99)
d) tìm số nguyên n để n+1 là bội của n-1
e) chứng minh rằng nếu m thuộc Z thì A=m.(m+2)-m.(m-9)-11 là bội của 11
f) tìm tất cả các số nguyên a,b sao cho a.b=(-2)
P/S: các bn làm nhanh giúp mình trong hôm ny nghen
cho M=(n-2016)/(n-2015). tìm n thuộc z để M là số nguyên
n-2016 : n - 2015
n-2015 - 1 : n -2015
1 : n- 2015
n - 2015 = 1, -1
n - 2015 = 1
n = 2016
+) n-2015 = -1
n = 2014
cõ lẽ vậy nha bạn
Câu 1: Tìm số nguyên x;y biết (x - 5) mũ 23 . (y + 2) mũ 7 = 0
Câu 2: Tìm giá trị nhỏ nhất của biểu thức A = (x - 2) mũ 2 + /y + 3/ + 7
Câu 3: Tìm số nguyên x sao cho 5 + x mũ 2 là bội của x + 1
Câu 4: Tìm các số nguyên x;y biết 5 + (x-2) . (y +1) = 0
Câu 5: Tìm x thuộc Z biết x - 1 là ước của x + 2
Câu 6: Tìm số nguyên m để m - 1 là ước của m + 2
Câu 7: Tìm x thuộc Z biết (x mũ 2 - 4) . (7 - x) = 0
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
2. \(A=\left(x-2\right)^2+|y+3|+7\)
Ta có :
\(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\|y+3|\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x-2\right)^2+|y+3|\ge0\forall x;y\)
\(\Rightarrow\left(x-2\right)^2+|y+3|+7\ge7\forall x;y\)
\(\Rightarrow A\ge7\forall x;y\)
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\|y+3|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)
Vậy GTNN của A là 7 khi \(\left(x;y\right)=\left(2;-3\right)\)