Cho đa thức \(Q\left(x\right)=-x^8+x^5-x^2+x-1\)
a, Tìm \(x\in Z\)để Q(x) = 0
b, Tìm x để Q(x) = 0
Cho biểu thức \(A=\left(\frac{2x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{5-x^2}{x+2}\right)\)
a, Rút gọn biểu thức A
b, Tính GTBT A tại \(\left|x\right|=\frac{1}{2}\)
\(c,Tìm\) giá trị của x để A < 0.
d, Tìm \(x\in Z\) để \(A\in Z\)
\(A=\left(\frac{2x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{5-x^2}{x+2}\right)\) ĐKXĐ : \(x\ne\pm2\)
\(A=\left(\frac{2x}{\left(x+2\right)\left(x-2\right)}-\frac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}\right):\left(\frac{x^2-4}{x+2}+\frac{5-x^2}{x+2}\right)\)
\(A=\left(\frac{2x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}\right):\left(\frac{x^2-4+5-x^2}{x+2}\right)\)
\(A=\frac{x-6}{\left(x+2\right)\left(x-2\right)}.\frac{x+2}{1}\)
\(A=\frac{x-6}{x-2}\)
b, ta có \(/\frac{1}{2}/=\frac{1}{2}=\frac{-1}{2}\)
TH1 : Thay x = 1/2 vào A
.....
Th2 : Thay x = -1/2 vào A :
...
Bn tự tính vào kết luận
c, Để \(A< 0\) \(\Rightarrow\frac{x-6}{x-2}\)\(< 0\)
Trường hợp 1 : \(\hept{\begin{cases}x-6>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>6\\x< 2\end{cases}\Rightarrow x\in}\varnothing}\)
Trường hợp 2 \(\hept{\begin{cases}x-6< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< 6\\x>2\end{cases}\Rightarrow}2< x< 6}\)
Vậy để \(A< 0\)thì \(2< x< 6\)
\(Cho\)\(A=x\left(x^3-1\right)-x^2\left(x^2+1\right)-5\left(x-1\right)\)
\(B=4x\left(x+2\right)-8\left(x+4\right)-4\)
a)Rút gọn 2 đa thức trên
b)Tìm gtln của A
c)B+3A+112 có phải là số chính phương hay không? Vì sao.\(\left(x\in Z\right)\)
d)tìm \(x\in Z\)để \(B-3x^2+41\)là số chính phương
\(a)\) \(A=x\left(x^3-1\right)-x^2\left(x^2+1\right)-5\left(x-1\right)\)
\(A=x^4-x-x^4-x^2-5x+5\)
\(A=-x^2-6x+5\)
Vậy \(A=-x^2-6x+5\)
\(B=4x\left(x+2\right)-8\left(x+4\right)-4\)
\(B=4x^2+8x-8x-32-4\)
\(B=4x^2-36\)
Vậy \(B=4x^2-36\)
\(b)\) Ta có :
\(A=-x^2-6x+5\)
\(-A=x^2+6x-5\)
\(-A=\left(x^2+6x+9\right)-14\)
\(-A=\left(x+3\right)^2-14\ge-14\)
\(A=-\left(x+3\right)^2+14\le14\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+3\right)^2=0\)
\(\Leftrightarrow\)\(x+3=0\)
\(\Leftrightarrow\)\(x=-3\)
Vậy GTLN của \(A\) là \(14\) khi \(x=-3\)
Chúc bạn học tốt ~
Cho biểu thức \(A=\left(\frac{2x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{5-x^2}{x+2}\right)\)
a, Rút gọn biểu thức A
b, Tính GTBT A tại \(\left|x\right|=\frac{1}{2}\)
\(c,Tìm\) giá trị của x để A < 0.
d, Tìm \(x\in Z\) để \(A\in Z\)
bài 1 thu gọn rồi tìm nghiệm của các đa thức sau
a) \(f\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+d\right)\)
b)\(g\left(x\right)=x\left(x-1\right)+1\)
bài 2 tìm x \(\in z\)để biểu thức
\(Q=\left|x-2\right|+\left|x-8\right|\)đạt GTNN
bài 3
cho a,b,c có tổng cộng = 1\(\left(a,b,c>0\right)\)
chứng minh rằng \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
easy !
Áp dụng bđt cauchy schwarz dạng engel :
\(VT=\frac{1^2}{a}+\frac{1^2}{b}+\frac{1^2}{c}\ge\frac{3^2}{1}=9\)
dấu = xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)
Có thưởng thì thưởng số chẵn a nhé :)) ko thích 1001 đâu !
Bài 1 :
a, \(f\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+d\right)\)
\(=x-2x^2+2x^2-x+d=d\)
Đặt \(f\left(x\right)=0\)hay \(d=0\)
Vậy phươnng trình có nghiệm là d = 0 (đề có j sai ko nhỉ?)
b, \(g\left(x\right)=x\left(x-1\right)+1=x^2-x+1\)
Ta có : \(\left(-1\right)^2-4=1-4< 0\)Vô nghiệm
Ngu dốt nên chỉ làm được ý a) thôi T^T
\(f\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+d\right)\)
f(x) có nghiệm <=> \(f\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+d\right)\)
\(\Leftrightarrow f\left(x\right)=x-2x^2+2x^2-x+d=0\)
\(\Leftrightarrow f\left(x\right)=0x+d=0\)
\(\Leftrightarrow f\left(x\right)=d=0\)
Vậy phương trình nghiệm đúng với mọi x và d = 0
Sai chỗ nào bỏ qua chỗ đấy nha bác :>
Cho M=\(\left(\frac{4}{x-4}-\frac{4}{x+4}\right).\left(\frac{x^2+8x+16}{32}\right)\)
a) Tìm x để giá trị của biểu thức bằng 0
b) Tính M biết \(x=\frac{-3}{8}\)
c) Tìm \(x\in Z\) để \(M\in Z\)
d) tìm GTLN của K biết \(K=\frac{M.3}{x^2+4x+24}\)
Ta có : Để M=\(\left(\frac{4}{x-4}-\frac{4}{x+4}\right)\left(\frac{x^2+8x+16}{32}\right)=0\)
<=> M=\(\left(\frac{4\left(x+4\right)-4\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)=0\)
<=>M=\(\left(\frac{4x+16-4x+16}{\left(x+4\right)\left(x-4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)\)
<=>M=\(\left(\frac{32}{\left(x-4\right)\left(x+4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)\)
<=>M=\(\frac{x+4}{x-4}\)
b) Thay x=\(\frac{-3}{8}\) vào M:
M=\(\frac{x+4}{x-4}=\frac{\frac{-3}{8}+4}{\frac{-3}{8}-4}=\frac{-29}{35}\)
c)Hình như sai!
d)
Cho 2 biểu thức : \(A=\left(\frac{x}{x+4}+\frac{4}{x-4}\right):\frac{x^2+16}{x+2}\&B=\frac{x+4}{x+2}\left(x>0,x#4\right)\)
a, CMR : \(A=\frac{x+2}{x^2-16}\)
b, Tìm \(x\in Z\)để \(M=A\left(B-1\right)\in Z\)
â) \(A=\left(\frac{x}{x+4}+\frac{4}{x-4}\right):\frac{x^2+16}{x+2}\)
\(=\left(\frac{x\left(x-4\right)+4\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}\right)=\left(\frac{x^2+16}{x^2-16}\right):\frac{x^2+16}{x+2}\)
\(=\frac{x+2}{x^2-16}\left(đpcm\right)\)
a) \(A=\left(\frac{x}{x+4}+\frac{4}{x-4}\right):\frac{x^2+16}{x+2}\)
\(A=\frac{x\left(x-4\right)+4\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}.\frac{x+2}{x^2+16}\)
\(A=\frac{x^2-4x+4x+16}{x^2-16}.\frac{x+2}{x^2+16}\)
\(A=\frac{x^2+16}{x^2-16}.\frac{x+2}{x^2+16}\)
\(A=\frac{x+2}{x^2-16}\left(đpcm\right)\)
Cho đa thức: \(P\left(x\right)=3x^2+x-2\)
a) Tìm nghiệm của P(x)
b) Tìm x để \(P\left(x\right)\ne0\)
c) C/m: \(\forall x\in Z\) thì \(P\left(x\right)⋮2\)
Bài làm:
a) Ta có: \(P\left(x\right)=0\)
\(\Leftrightarrow3x^2+x-2=0\)
\(\Leftrightarrow\left(3x^2+3x\right)-\left(2x+2\right)=0\)
\(\Leftrightarrow3x\left(x+1\right)-2\left(x+1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-1\end{cases}}\)
Vậy \(x=\frac{2}{3}\) và \(x=-1\) là nghiệm của đa thức P(x)
b) \(P\left(x\right)\ne0\Leftrightarrow\left(3x-2\right)\left(x+1\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}3x-2\ne0\\x+1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne\frac{2}{3}\\x\ne-1\end{cases}}\)
Vậy khi \(x\ne\left\{-1;\frac{2}{3}\right\}\) thì đa thức P(x) khác 0
c) Ta có: \(P\left(x\right)=3x^2+x-2=x\left(x+3\right)-2\)
Mà \(x\left(x+3\right)\) luôn chẵn với mọi x nguyên
=> \(x\left(x+3\right)-2⋮2\left(\forall x\inℤ\right)\)
\(\Rightarrow P\left(x\right)⋮2\left(\forall x\inℤ\right)\)
a. \(P\left(x\right)=3x^2+x-2=0\)
\(\Leftrightarrow\left(3x^2+3x\right)-\left(2x+2\right)=0\)
\(\Leftrightarrow3x\left(x+1\right)-2\left(x+1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=2\\x=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-1\end{cases}}}\)
Đa thức P ( x ) có các nghiệm x là 2/3 và -1
b. Để \(P\left(x\right)\ne0\) thì x khác các nghiệm : 2/3 và -1 ( câu a )
P(x) = 3x2 + x - 2
a) P(x) = 0 <=> 3x2 + x - 2 = 0
<=> 3x2 + 3x - 2x - 2 = 0
<=> ( 3x2 - 3x ) - ( 2x + 2 ) = 0
<=> 3x( x + 1 ) - 2( x + 1 ) = 0
<=> ( 3x - 2 )( x + 1 ) = 0
<=> \(\orbr{\begin{cases}3x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-1\end{cases}}\)
Vậy nghiệm của P(x) là x = 2/3 hoặc x = 11
b) Để P(x) \(\ne\)0 => \(x\ne\left\{-1;\frac{2}{3}\right\}\)
c) Tham khảo bạn Đăng nhé '-'
1/ Cho biểu thức \(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{3\sqrt{x}-3}{x-5\sqrt{x}+6}\)
a)Tìm các giá trị của x để A<-1
b) Tìm các giá trị của \(x\in Z\) sao cho \(2A\in Z\)
2/ Cho \(A=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)tìm các giá trị của x để A>-6
Cho biểu thức \(P=1+\frac{8}{\left(x+2\right)^2\left(x-2\right)}\)
a) Tìm x để P = 0
b) Tìm x để P = 1
c) Tìm x để P > 0