Cho tam giác ABC vuông tại A, tia phân giác B cắt AC tại D. CM: AD<AB
Cho tam giác ABC vuông tại A . Kẻ tia phân giác BD của góc B ( D thuộc AC ) . Qua D kẻ DE vuông góc BC tại E . a) CM AD = DE . b) Tia ED cắt Tia BA tại F , CM DF = DC . c) CM tam giác AFC cân .
a) Xét ΔADB vuông tại A và ΔEDB vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔADB=ΔEDB(cạnh huyền-góc nhọn)
Suy ra: AD=ED(Hai cạnh tương ứng)
b) Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(cmt)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(cạnh góc vuông-góc nhọn kề)
Suy ra: DF=DC(hai cạnh tương ứng)
cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại D. từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K
a, CM AD=HD
b, So sánh AD VÀ DC
c, CM TAM GIÁC ABC Cân
Ta có hình vẽ sau: ( tự vẽ hình nha bạn)
a) Xét \(\Delta ABD\)và \(\Delta HBD\):
BD: cạnh chung
\(\widehat{ABD}=\widehat{HBD}\left(gt\right)\)
\(\widehat{BAD}=\widehat{BHD}=90^o\)
=> \(\Delta ABD=\Delta HBD\left(ch-gn\right)\)
=> AD=HD( 2 cạnh tương ứng)
=> đpcm
b)Xét \(\Delta DHC\)vuông tại H có:
DC>HC
Mà HD=AD ( cm câu a)
=> DC> AD
c) ( Câu này sai đề nè bạn, phải là tam giác BKC cân nha)
Xét \(\Delta ADK\)và \(\Delta HDC:\)
AD=HD( cm câu a)
\(\widehat{ADK}=\widehat{HDC}\left(đđ\right)\)
\(\widehat{DHK}=\widehat{DHC}=90^o\)
=> \(\Delta ADK=\Delta HDC\left(ch-gn\right)\)
=> AK=HC ( 2 cạnh t/ứ)
Mà AB=BH( \(\Delta ABD=\Delta HBD\))
=> AB+AK=HC+BH
=> BK=BC
=> \(\Delta BKC\)cân tại B
=> đpcm
a) Xét tam giác ABD và tam giác HBD có :
BD chung
^ABD = ^HBD ( BD là phân giác của ^B )
=> Tam giác ABD = tam giác HBD ( ch - gn )
=> AD = HD ( hai cạnh tương ứng )
=> AB = AH ( _________________ )
b) Ta có : ^BAD + ^DAK = 1800 ( kề bù )
^BHD + ^DHC = 1800 ( kề bù )
Mà ^BAD = ^BHD = 900
=> ^DAK = ^DHC = 900
Xét tam giác DAK và tam giác DHC có :
^DAK = ^DHC ( cmt )
DA = DH ( cmt )
^ADK = ^HDC ( đối đỉnh )
=> Tam giác DAK = tam giác DHC ( g.c.g )
=> AD = DC ( hai cạnh tương ứng )
=> AK = HC ( _________________ )
c) ( Phải là KBC cân nhé . ABC sao được . Với lại bạn nối KC cho mình . Vẽ hơi vội )
Ta có : BK = BA + AK
BC = BH + HC
Mà BA = BH , AK = HC ( cmt )
=> BK = BC
Xét tam giác KBC có BK = BC ( cmt )
=> Tam giác KBC cân tại B ( đpcm )
Giải
a) Xét tam giác vuông ABD và tam giác vuông HBD có:
BD là cạnh huyền chung
Góc ABD = góc HBD (BD là tia phân giác góc ABC)
=> Tam giác BAD = tam giác BHD ( cạnh huyền_góc nhọn)
=> AD = DH ( 2 cạnh tương ứng)
b) Ta có:
BD là tia phân giác của góc ABC và cắt AC tại D
=> D là trung điểm của AC
=> AD = DC
c) Xét tam giác vuông ADK và tam giác vuông HDC có:
AD =DH ( tam giác BAH = tam giác BHD)
Góc ADK = góc HDC ( 2 góc đối đỉnh)
=> Tam giác ADK = tam giác HDC
Ta có:
BK = BA + AK
BC = BH + HC
Mà BA = BH ( tam giác BAH = tam giác BHD)
AK = HC ( tam giác ADK = tam giác HDC)
=> BK = BC
=> Tam giác KBC cân tại B
Cho tam giác ABC vuông tại A có AB>AC. Tia phân giác của góc B cắt AC tại D. Từ D kẻ DH vuông góc vs CB(H thuộc BC).
a) CM: Tam giác ADB = Tam giác HDB
b) CM: CD>AD
c) Trên tia AC lấy điểm E sao cho AE=AB, đường thẳng vuông góc vs AE tại E cắt tia DH tại K. CM:góc DBK = 45 độ
Cho tam giác ABC vuông tại A. Tia phân giác của \(\widehat{ABC}\)cắt AC tại M. Trên tia BC lấy D sao cho BD = BA
a) CM : tam giác ABM = tam giác DBM
b) CM : MP vuông góc BC
c) Tia BA cắt tia DM tại E. CMR : AD // CE
Bài làm
a) Xét ∆ABM và ∆DBM có:
AB = BD ( cmt )
^ABM = ^DBM ( do BM phân giác )
Cạnh AM chung.
=> ∆ABM = ∆DBM ( c.g.c )
b) Vì ∆ABM = ∆DBM ( cmt )
=> ^BAM = ^BDM
Mà ^BAM = 90°
=> ^BDM = 90°
=> MD vuông góc với BC.
d) Xét ∆BAC và ∆BDE có:
^BAC = ^BDE ( = 90° )
AB = BD ( gt )
^ABC chung
=> ∆BAC = ∆BDE ( g.c.g )
=> BE = BC
=> ∆BEC cân tại B
=> ^BEC = ( 180° - ^ABC )/2. (1)
Ta có: BA = BD ( gt )
=> ∆BAD cân tại B
=> ^BAD = ( 180° - ^ABC )/2. (2)
Từ (1) và (2) => ^BEC = ^BAD
Mà hai góc này ở vị trí đồng vị
=> AD // CE ( đpcm )
Cho tam giác ABC vuông tại A . Tia phân giác của góc B cắt AC tại D . Kẻ DH vuông góc với BC ( H thuộc BC ) và DH cắt AB tại K . CM :
a. AD = DH
b. AD < DC
c. TAm giác KBC cân
a)xét 2 tam giác vuông ABD và HBD có:
BD(chung)
ABD=CBD(gt)
suy ra tam giác ABD=HBD(CH-GN)
suy ra AD=DH
b)
ta có: tam giác HCD vuông tại H sủy a DC là cạnh lớn nhất trong tam giác đó
suy ra DC>DH mà DH=Ad suy ra AD<DC
c)
xét 2 tam giác vuông BHK và BAC có:
BA=BH(cmt)
BHK=BAC=90
B(chung)
suy ra : tam giác BHK=BAC(g.c.g)
suy ra BC=BK
suy ra tma giác BKC cân tại B
a, Xét tg ABD và BDH :
Ta có : A=H=90 ( vuông nhau )
BD cạnh chung
góc ADB = góc DBH
=> tg ABD = tg DBH ( gcg)
=>AD=DH (2 cạnh tương ứng)
b, Xét tg DHC vuông tại H
Mà H là góc lớn nhất
=> DC là cạnh lớn nhất
Mà : trong tg DHC có :
DC > DH
Nên : DC> DH=AD
Vậy : DC>AD
c, k pt
cho tam giác ABC vuông tại A (AB>AC) trên cạnh AB lấy điểm D \ AD=AC. vẽ tia phân giác của góc BAC cắt BC tại E
a) Góc ACD =?
b) CM EC=ED
c) CM AE vuông góc CD
b: Xét ΔAEC và ΔAED có
AC=AD
\(\widehat{CAE}=\widehat{DAE}\)
AE chung
Do đó: ΔAEC=ΔAED
Suy ra: EC=ED
Cho tam giác abc vuông tại A có ab=3cm,bc=5cm.Tia phân giác của góc abc cắt ac tại d.a)tính ac,ad? b) vẽ tia Cx vuông góc với tia BD tại E và tia CE cắt AB tại F .CM: tam giác abd đồng dạng với tam giác ebc.c) tính tỉ số diện tích của tam giác abd và tam giác ebc
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
hay AC=4(cm)
Vậy: AC=4cm
b) Xét ΔABD vuông tại A và ΔEBC vuông tại E có
\(\widehat{ABD}=\widehat{EBC}\)(BE là tia phân giác của \(\widehat{ABC}\))
Do đó: ΔABD\(\sim\)ΔEBC(g-g)
Cho tam giác abc có ab= ac, tia phân giác góc a cắt bc tại d
a, cmr tam giác abd = tam giác acd
b, từ d kẻ dm vuông góc với ab tại m, dn vuông góc với ac tại n. cm: dm = dn
c, cm mn vuông góc với ad
con điênnnnnnnnnnnnnn
Rảnh lắm à, liệu trên thế giới này chỉ có tui là con điên thôi sao, mẹ Đ ko dại thế nào là nói năng cho lịch sự sao.Tui cx ko muốn nói nhiều.
Tốm lại ý:Cũng chưa biết mình là ai đâu, mà tui nghĩ Đ cx ko xứng để nói những lời đấy với tui đâu =>về mà học lại các phẩm chất để thành người đi
Kính gửi: Nguyễn Anh Đức
Cho tam giác ABC vuông tại A có góc B = 2 góc C, đường cao AD.
a) CM: tam giác ADB đồng dạng tam giác ABC
b) Kẻ tia phân giác của góc ABC cắt AD tại F và cắt AC tại E. CM: AB^2=AE*AC
c) chứng tỏ DF/Fa = AE/EC
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho
Cho tam giác ABC vuông tại A. Tia phân giác của \(\widehat{ABC}\)cắt AC tại M. Trên tia BC lấy D sao cho BD = BA
a) CM : Tam giác ABM = tam giác DBM
b) CM : MD vuông góc BC
c) Tia BA cắt tia DM tại E. CMR : AD // CE
Cần câu c nhất ạ!
mik làm lại cho nó lq được ko?
a) ta xét t/gABM và t/gDBM ta có:
AB=DB (gt)
=>^ABM=^DBM
BM chung
=>t/gABM=t/gDBM (c.g.c)
b)Vì t/gABM=t/gDEM
=>AM=DM ( 2 cạnh tương ứng)
=>^MAD=^AMD=90o
=>MD_|_BC
c)Vì t/gABM=t/gDEM (đối đỉnh)
=>t/gAME=t/gDMC(cgv-gn)
=>ME=MC
=>t/gMEC cân tại M
=>^MEC=^MCE
Mà trong t/gMEC ta thấy:
^MEC+^MDA+^DAM=^MEC+^CEM+EMC
mà ^EMC=^AMD ( 2 góc đối đỉnh)
=>^MAD+^MDA=^MEC+^EMC
=>^MAD=^MCE ( so le)
=>AD//CE
=>đpcm.
a) tam giác ABM=tam giác DBM (c.g.c) (1) suy ra AM=MD
b) Từ (1) suy ra góc BAM = góc BDM
mà góc BAM = 900
suy ra góc BDM = 900
suy ra MD vuông góc với BC tại D
c) Vì AB=BD suy ra tam giác ABD cân tại B
mà BM là phân giác của góc ABD
suy ra BM là phân giác đồng thời là đường cao của tam giác ABD
suy ra BM vuông góc với AD (3)
Xét tam giác AME và tam giác DMC
có góc MAE=góc MDC=900
AM=MD ( CMT)
góc AME=góc DMC ( đối đỉnh)
suy ra tam giác AME = tam giác DMC (g.c.g)
suy ra AE=DC
mà AB+AE=BE, BD+DC=BC lại có AB=BD
suy ra BC = BE suy ra tam giác EBC cân tại B
mà BM là phân giác của góc EBC
suy ra BM là phân giác đồng thời là đường cao của tam giác EBC
suy ra BM vuông góc với CE tại M (4)
Từ (3) và (4) suy ra AD//CE