Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
châu anh minh
Xem chi tiết
Nhọ Nồi
17 tháng 12 2015 lúc 22:54

a) Ta có:

72 đồng dư với -1 (mod 50)

=> (72)1007 đồng dư với (-1)1007 (mod 50)

=> 72014 đồng dư với -1 (mod 50)

=> 72014 + 1 đồng dư với -1 + 1 (mod 50)

=> 72014 + 1 đồng dư với 0 (mod 50)

=> 72014 + 1 chia hết cho 50

dsdsf
Xem chi tiết
châu anh minh
Xem chi tiết
Đức Hồ
Xem chi tiết
nguyen vu thanh lan
Xem chi tiết
Lãnh Hạ Thiên Băng
2 tháng 8 2016 lúc 14:36

Ta có: 2+2^2+2^3+2^4+2^5=2+4+8+16+32=62 chia hết cho 31.

          2^6+2^7+2^8+2^9+2^10=2^5x(2+2^2+2^3+2^4+2^5)=2^5x62 chia hết cho 31.

          2^11+2^12+2^13+2^14+2^15=2^10x(2+2^2+2^3+2^4+2^5)=2^10x62 chia hết cho 31.

          ...

Số số hạng trong B là: (100-1):1+1=100(số hạng)

Vì số số hạng là 100 chia hết cho 5 là số số hạng của các tổng chia hết cho 31 như trên nên B chia hết cho 31. 

Nguyễn Trương Ngọc Thi
2 tháng 8 2016 lúc 14:38

Ta có: 2+2^2+2^3+2^4+2^5=2+4+8+16+32=62 chia hết cho 31.

          2^6+2^7+2^8+2^9+2^10=2^5x(2+2^2+2^3+2^4+2^5)=2^5x62 chia hết cho 31.

          2^11+2^12+2^13+2^14+2^15=2^10x(2+2^2+2^3+2^4+2^5)=2^10x62 chia hết cho 31.

          ...

Số số hạng trong B là: (100-1):1+1=100(số hạng)

Vì số số hạng là 100 chia hết cho 5 là số số hạng của các tổng chia hết cho 31 như trên nên B chia hết cho 31. 

Nguyễn Thị Yến Nga
Xem chi tiết
Trên con đường thành côn...
17 tháng 3 2020 lúc 20:55

Ta có:

\(A=3^{2000}+...+3^{2012}+3^{2013}⋮3\left(1\right)\)

Lại có:

\(A=3^{2000}+3^{2001}...+3^{2012}+3^{2013}\)

\(\Rightarrow A=\left(3^{2000}+3^{2001}\right)+...+\left(3^{2012}+3^{2013}\right)\)

\(\Rightarrow A=3^{2000}\left(1+3\right)+...+3^{2012}\left(1+3\right)\)

\(\Rightarrow A=3^{2000}.4+...+3^{2012}.4⋮4\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow A=3^{2000}+...+3^{2012}+3^{2013}⋮12\left(đpcm\right)\)

Khách vãng lai đã xóa
Đức Anh Trịnh Thành
Xem chi tiết
Nguyễn Vũ Anh
Xem chi tiết
Nguyễn Trúc Ly
Xem chi tiết
Nguyễn Minh Quang
21 tháng 12 2020 lúc 17:35

ta có

\(A=5^{2020}+5^{2019}+5^{2018}+5^{2017}=5^{2018}\left(5^2+1\right)+5^{2017}\left(5^2+1\right)\)

\(=\left(5^{2018}+5^{2017}\right)\left(5^2+1\right)=6.5^{2017}.26=12.5^{2016}.65\) chia hết cho 65.

Khách vãng lai đã xóa