Chứng minh: (72012 + 65)2013 chia hết cho 12
Câu 1: Chứng minh:
a)72014 + 1 chia hết cho 50
b) (72012 + 65)2013 chia hết cho 12
a) Ta có:
72 đồng dư với -1 (mod 50)
=> (72)1007 đồng dư với (-1)1007 (mod 50)
=> 72014 đồng dư với -1 (mod 50)
=> 72014 + 1 đồng dư với -1 + 1 (mod 50)
=> 72014 + 1 đồng dư với 0 (mod 50)
=> 72014 + 1 chia hết cho 50
chứng minh D = 3 + 3^3 + 3^5 + ... +3^2011 +3^2013+3^2015 chia hết cho 65
Câu 1: Chứng minh:
a)72014 + 1 chia hết cho 50
b) (72012 + 65)2013 chia hết cho 12
Câu 2: Tìm số dư phép chia:
a) (330 +31)32 chia cho 14
b) (82012 +26)2013 chia cho 21
cho a,b là các số nguyên dương thỏa mãn (a;65)=(b;65)=1 chứng minh a^12-b^12 chia hết cho 65
Chứng minh đẳng thức sau: 32^403 - 2^2013 chia hết cho 12
Ta có: 2+2^2+2^3+2^4+2^5=2+4+8+16+32=62 chia hết cho 31.
2^6+2^7+2^8+2^9+2^10=2^5x(2+2^2+2^3+2^4+2^5)=2^5x62 chia hết cho 31.
2^11+2^12+2^13+2^14+2^15=2^10x(2+2^2+2^3+2^4+2^5)=2^10x62 chia hết cho 31.
...
Số số hạng trong B là: (100-1):1+1=100(số hạng)
Vì số số hạng là 100 chia hết cho 5 là số số hạng của các tổng chia hết cho 31 như trên nên B chia hết cho 31.
Ta có: 2+2^2+2^3+2^4+2^5=2+4+8+16+32=62 chia hết cho 31.
2^6+2^7+2^8+2^9+2^10=2^5x(2+2^2+2^3+2^4+2^5)=2^5x62 chia hết cho 31.
2^11+2^12+2^13+2^14+2^15=2^10x(2+2^2+2^3+2^4+2^5)=2^10x62 chia hết cho 31.
...
Số số hạng trong B là: (100-1):1+1=100(số hạng)
Vì số số hạng là 100 chia hết cho 5 là số số hạng của các tổng chia hết cho 31 như trên nên B chia hết cho 31.
Cho \(A=3^{2013}+3^{2012}+...+3^{2000}\)
Chứng minh rằng A chia hết cho 12
Ta có:
\(A=3^{2000}+...+3^{2012}+3^{2013}⋮3\left(1\right)\)
Lại có:
\(A=3^{2000}+3^{2001}...+3^{2012}+3^{2013}\)
\(\Rightarrow A=\left(3^{2000}+3^{2001}\right)+...+\left(3^{2012}+3^{2013}\right)\)
\(\Rightarrow A=3^{2000}\left(1+3\right)+...+3^{2012}\left(1+3\right)\)
\(\Rightarrow A=3^{2000}.4+...+3^{2012}.4⋮4\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow A=3^{2000}+...+3^{2012}+3^{2013}⋮12\left(đpcm\right)\)
chứng minh: M=(2013+2013^2+2013^3+.......................2013^10) Chia hết cho 2014
bài 12 : cho n là số tự nhiên . chứng minh rằng
a) (n+2013)(n+2014) chia hết cho 2
b)n(n+1)(n+2) chia hết cho và chia hết cho3
c)n(n+1)(2n+1) chia hế cho 2 và cho 3
ta có
\(A=5^{2020}+5^{2019}+5^{2018}+5^{2017}=5^{2018}\left(5^2+1\right)+5^{2017}\left(5^2+1\right)\)
\(=\left(5^{2018}+5^{2017}\right)\left(5^2+1\right)=6.5^{2017}.26=12.5^{2016}.65\) chia hết cho 65.