cho tam giác ABC có AD là đường cao,H là trực tâm.Biết BD=4cm,BC=10cm,AD=8cm.Tính HD
Cho tam giác ABC Voòng tại A Có AB=3cm ÁC=4cm AH là đường cao AD là phân giác Tính BC,BH,CH,BD,CD,HD
ΔABC vuông tại A
=>AB^2+AC^2=BC^2
=>BC=căn 3^2+4^2=5cm
ΔABC vuông tại A có AH là đường cao
nên AH*BC=AB*AC; BH*BC=BA^2; CH*CB=CA^2
=>AH=3*4/5=2,4cm; BH=3^2/5=1,8cm; CH=4^2/5=3,2cm
ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=5/7
=>BD=15/7cm; CD=20/7cm
Đường trung trực của cạnh BC trong tam giác ABC cắt cạnh AC tại D. Cho AC = 10cm, BD = 4cm. Khi đó AD là:
A. 6cm
B. 4cm
C. 3cm
D. 5cm
Ta chứng minh được ΔBDM = ΔCDM nên BD = DC = 4cm. Khi đó AD = 6cm Chọn A
Cho tam giác ABC Vuông tại A Có AB=3cm , AC=4cm , AH là đường cao , AD là phân giác Tính BC,BH,CH,BD,CD,HD. Giúp mik với ạ
Lời giải:
Áp dụng định lý Pitago:
$BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5$ (cm)
Áp dụng hệ thức lượng trong tam giác vuông:
$BH=\frac{AB^2}{BC}=\frac{3^2}{5}=\frac{9}{5}=1,8$ (cm)
$CH=BC-BH=5-1,8=3,2$ (cm)
$\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}$
$\Rightarrow \frac{BD}{BD+CD}=\frac{3}{7}$
Hay $\frac{BD}{BC}=\frac{3}{7}\Rightarrow BD=\frac{3}{7}.BC=\frac{3}{7}.5=\frac{15}{7}$ (cm)
$CD=BC-BD=5-\frac{15}{7}=\frac{20}{7}$ (cm)
$HD=BD-BH=\frac{15}{7}-1,8=\frac{12}{35}$ (cm)
cho tam giác ABC vuông tại A đường cao AH, AD là phân giác góc A. Biết AB=6cm, BC=10cm. Tính BD,HD,DC,AD
Help
AC=căn 10^2-6^2=8cm
AH=6*8/10=4,8cm
\(AD=\dfrac{2\cdot6\cdot8}{6+8}\cdot cos45=\dfrac{24}{7}\sqrt{2}\left(cm\right)\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{24}{35}\left(cm\right)\)
AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=(DB+DC)/(3+4)=10/7
=>DB=30/7cm; DC=40/7cm
cho tam giác ABC vuông tại A có đường phân giác BD.Kẻ đường vuông góc với BC tại H.Gọi K là giao điểm của AB và HD.
a)AB=6cm,AD=8cm.Tính BD
b)cm:DA=DH
c)cm:BD là đường trung trực của đoạn thẳng AH
d)cm:DK=DC
e) biết HD=5cm.TínhAH=?
Cho tam giác ABC vuông tại A. Kẻ đường cao AH và đường phân giác AD (H;D thuộc BC). Biết BD=7cm;CD=10cm. Tính HD
cho tam giác abc có ab=ac = 10cm,bc = 12cm,các đường cao ad và ce cắt nhau tại h. a) tính ad b) tam giác abd đồng dạng với tam giác cbe c) tính be,hd
b: Xét ΔABD vuông tại D và ΔCBE vuông tại E có
\(\widehat{B}\) chung
Do đó: ΔABD\(\sim\)ΔCBE
Cho Tam giác ABC ( AB<AC), BC=a. AD,BE,CF là 3 đường cao, H là trực tâm a) Chứng minh rằng tam giác BHA đồng dạng tam giác BFE và góc DEF=2BAD b)gọi K là giao điểm của AD,EF. Tính (AK*HD)/(AD*KH) c)Tìm vị trí của D trên BC để HD*AD đạt giá trị lớn nhất d)Lấy i là trung điểm của AH. Chứng minh rằng K là trực tâm của tam giác IBC
Cho tam giác ABC có ba góc nhọn Vẽ đường cao AD và BE. Gọi H là trực tâm và G là trọng tâm của tam giác ABC. C/m:
a) tanB*tanC= AD/HD
b) HG song song với BC C/m: tanB*tanC=3