Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hương Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2023 lúc 22:56

ΔABC vuông tại A

=>AB^2+AC^2=BC^2

=>BC=căn 3^2+4^2=5cm

ΔABC vuông tại A có AH là đường cao

nên AH*BC=AB*AC; BH*BC=BA^2; CH*CB=CA^2

=>AH=3*4/5=2,4cm; BH=3^2/5=1,8cm; CH=4^2/5=3,2cm

ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=5/7

=>BD=15/7cm; CD=20/7cm

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 6 2017 lúc 13:41

Ta chứng minh được ΔBDM = ΔCDM nên BD = DC = 4cm. Khi đó AD = 6cm Chọn A

Hương Lê
Xem chi tiết
Akai Haruma
21 tháng 8 2023 lúc 14:23

Lời giải:

Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5$ (cm)

Áp dụng hệ thức lượng trong tam giác vuông: 

$BH=\frac{AB^2}{BC}=\frac{3^2}{5}=\frac{9}{5}=1,8$ (cm) 

$CH=BC-BH=5-1,8=3,2$ (cm)

$\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}$

$\Rightarrow \frac{BD}{BD+CD}=\frac{3}{7}$

Hay $\frac{BD}{BC}=\frac{3}{7}\Rightarrow BD=\frac{3}{7}.BC=\frac{3}{7}.5=\frac{15}{7}$ (cm)

$CD=BC-BD=5-\frac{15}{7}=\frac{20}{7}$ (cm)

$HD=BD-BH=\frac{15}{7}-1,8=\frac{12}{35}$ (cm)

Akai Haruma
21 tháng 8 2023 lúc 14:26

Hình vẽ:

An Đinh Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2023 lúc 23:27

AC=căn 10^2-6^2=8cm

AH=6*8/10=4,8cm

\(AD=\dfrac{2\cdot6\cdot8}{6+8}\cdot cos45=\dfrac{24}{7}\sqrt{2}\left(cm\right)\)

\(HD=\sqrt{AD^2-AH^2}=\dfrac{24}{35}\left(cm\right)\)

AD là phân giác

=>DB/AB=DC/AC

=>DB/3=DC/4=(DB+DC)/(3+4)=10/7

=>DB=30/7cm; DC=40/7cm

vunamphuong
Xem chi tiết
NGUYỄN NHỰT LINH
Xem chi tiết
Son Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 9 2021 lúc 21:39

b: Xét ΔABD vuông tại D và ΔCBE vuông tại E có 

\(\widehat{B}\) chung

Do đó: ΔABD\(\sim\)ΔCBE

Vũ Đức Minh
Xem chi tiết
Lê Trang
Xem chi tiết