Cho tam giác ABC, phân giác AD, BE, CF . Giả sử AD, BE, CF cũng đồng thời là 3 đường phân giác của tam giác DEF. Chứng minh tam giác ABC đều.
cho tam giác ABC có đường cao AD, BE , CF
a. chứng minh AD, BE, CF cũng là phân giác của tam giác DEF
b. cho biết  = 72 độ, ^B= 63 độ. tính các góc của tam giác DEF
c. cho BC=12cm gọi I là trung điểm của BC; cho ^BCF = 25 độ và gọi cung của đường tròn (I;6cm) bị chắn bởi góc này là ^BmF'. tính diện tích hình quạt IBmF'
Cho tam giác ABC có AD là tia phân giác của góc A, D thuộc BC. Qua đỉnh B vẽ đường thẳng song song với AC, cắt đường thẳng AD tại điểm E.
a) Chứng minh: Tam giác ABE cân tại B
b)Chứng minh: DB = BE DC AC
c) Chứng minh: DB = AB DC AC
d) Biết AB= 2,5cm; AC= 5cm; DC= 3cm. Tính độ dài đoạn thẳng BD.
Cho tam giác ABC vuông tại A. Phân giác BE,CF giao nhau tại I. Gọi M là trung điểm EF. Chứng minh rằng MI ⊥ BC.
Cho tam giác ABC vuông tại A. Phân giác BE,CF giao nhau tại I. Gọi M là trung điểm EF. Chứng minh rằng MI ⊥ BC
Cho tam giác ABC có AD là tia phân giác của góc A, D thuộc BC. Qua đỉnh B vẽ đường thẳng song song với AC, cắt đường thẳng AD tại điểm E.
a) Chứng minh: Tam giác ABE cân tại B
b)Chứng minh: DB/DC=BE/AC
c) Chứng minh: DB/DC=AB/AC
d) Biết AB= 2,5cm; AC= 5cm; DC= 3cm. Tính độ dài đoạn thẳng BD
a) Ta có : BE // AC
\(\Rightarrow\)^AEB = ^EAC
\(\Rightarrow\)^AEB = ^BAE (= ^EAC)
\(\Rightarrow\)△AEB cân tại B (ĐPCM)
b) Xét △ABC có AD là tia phân giác của góc A
\(\Rightarrow\)\(\frac{DB}{DC}=\frac{AB}{AC}\)
Mà AB = BE (△AEB cân tại B)
\(\Rightarrow\frac{DB}{DC}=\frac{BE}{AC}\)(ĐPCM)
c) Xét △ABC có AD là tia phân giác của góc A
\(\Rightarrow\)\(\frac{DB}{DC}=\frac{AB}{AC}\)(Đã chứng minh ở câu b)
d) Ta có :\(\frac{DB}{DC}=\frac{AB}{AC}\)
\(\Rightarrow\frac{DB}{3}=\frac{2,5}{5}\)
\(\Rightarrow DB=1,5\)
Vậy DB = 1,5 cm
Cho tam giác nhọn ABC các đường cao AD BE CF cắt nhau tại H , chứng minh
a, Tam giác HBF đồng dạng với tam giác HCE
b, HB.HE= HF.HC = HA.HD
c, EH là tia phân giác của góc DEF
bai 1: cho tam giác ABC có góc a bằng 120 độ, phân giác Ad. Kẻ DH vuông góc với AD, DE vung góc với AC. Trên các đoạn EB và FC lấy hai điểm I và K sao cho EI = FK
a) chứng minh tam giác DEF là tam giác đều
b) chứng minh tam giác DIK là tam giác cân
c) Từ C kẻ đường thẳng song song với AD cắt BA tại M. Chứng minh tam giác MAC là tam giác đều. Tính AD biết CM=m và CF=n
bai 2: cho góc nhọn xOy . Điểm H nằm trên phân giác của góc xOy. Từ H dựng các dừong vuông góc xuống hai cạnh ox và oy( A thuộc Ox, B thuộc Oy)
a) chung minh tam giác HAB là tam giác cân
b) gọi D là hình chiếu của điểm A trên Oy, C là giao điểm của AD với OH . Chứng minh BC vuông góc với ox
Huyền ơi đề bài sai nặng rồi hỏi lại đi bài 1
đúng mà mình đăng từ đề cương thầy giáo cho ôn thi mà
Cho tam giác ABC nhọn nội tiếp đường tròn (O;R). Hai đường cao BE,CF cắt nhau tại H . AH cắt BC tại D và cắt (O) tại I .
a) Chứng minh H là trực tâm của tam giác ABC và AH BC tại D .
b) Chứng minh AEF ABC và EA.EC EH.EB.
c) Chứng minh 4 điểm A, E, H , F cùng thuộc một đường tròn. Xác định tâm J của đường tròn đó.
d) Kẻ đường kính AK của đường tròn (O;R). Chứng minh BK AB;KC AC từ đó suy ra tứ giác BHCK là hình bình hành
a: Xét ΔABC có
BE là đường cao
CF là đường cao
BE cắt CF tại H
Do đó: H là trực tâm của ΔABC
Cho tam giác ABC vuông tại A,AD vuông góc BC (D thuộc BC)
a, Chứng minh rằng : Tam giác DBA đồng dạng với tam giác ABC
b, Chứng minh rằng : AB^2 = BC x BD
c, Đường phân giác trong BE ( E thuộc AC ) của tam giác ABC cắt AD tại F
Chứng minh rằng : FD/FA = EA/EC