Cho tam giác ABC có AD là tia phân giác của góc A, D thuộc BC. Qua đỉnh B vẽ đường thẳng song song với AC, cắt đường thẳng AD tại điểm E.
a) Chứng minh: Tam giác ABE cân tại B
b)Chứng minh: DB = BE DC AC
c) Chứng minh: DB = AB DC AC
d) Biết AB= 2,5cm; AC= 5cm; DC= 3cm. Tính độ dài đoạn thẳng BD.
Cho tam giác ABC vuông tại A. Phân giác BE,CF giao nhau tại I. Gọi M là trung điểm EF. Chứng minh rằng MI ⊥ BC.
Cho tam giác ABC vuông tại A. Phân giác BE,CF giao nhau tại I. Gọi M là trung điểm EF. Chứng minh rằng MI ⊥ BC
Cho tam giác ABC có AD là tia phân giác của góc A, D thuộc BC. Qua đỉnh B vẽ đường thẳng song song với AC, cắt đường thẳng AD tại điểm E.
a) Chứng minh: Tam giác ABE cân tại B
b)Chứng minh: DB/DC=BE/AC
c) Chứng minh: DB/DC=AB/AC
d) Biết AB= 2,5cm; AC= 5cm; DC= 3cm. Tính độ dài đoạn thẳng BD
Cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau tại H.
a, Chứng minh: \(\Delta ABE\)đồng dạng với \(\Delta ACF\)
b, Chứng minh: HE.HB=HC.HF
c, Chứng minh: góc AEF= góc ABC
d, Chứng minh EB là tia phân giác của góc DEF
Cho tam giác ABC. AD,BE,CF là ba đường cao. H là trực tâm. Chứng minh rằng:
a, AFxAB= ADxAH và tam giác AFD đồng dạng với tam giác AHB
b, DH là phân giác của góc FDE. Từ đó có nhận xét gì về điểm H đối với tam giác EFD ?
c, Tính: HD/AD + HE/BE + HF/CF
d, Chứng minh rằng ba tỉ số HA/HD, HB/HE, HC/HF có ít nhất một tỉ số lớn hơn hoặc bằng 2; ít nhất một tỉ số nhỏ hơn hoặc bằng 2.
Giúp mình với! Cảm ơn mọi người nhiều!
Cho tam giác ABC nhọn (AB<AC). Ba đường cao AD,BE,CF cắt nhau tại H
a) Chứng minh tam giác AEB đồng dạng tam giác AFC
b) Chứng minh CH.CF=CD.CB
c) Chứng minh CB2 =BH.BE+CH.CF
1) Cho tam giác ABC nhọn có các đường cao AD,BE,CF cắt nhau ở H. CMR HD/AD + HE/BE + HF/CF = 1
2)Tam giác ABC , D là trung điểm của AB . Vẽ DH vuông với BC , H thuộc BC. CMR S tam giác ABC =DH.BC
Cho tam giác đều ABC , Trên tia đối của tia AB , lấy điểm D và trên tia đối của tia AC , lấy điểm E sao cho AD = AE . Gọi M,N lần lượt là trung điểm của AE , AB và CD . Chứng minh : tam giác MNP là tam giác đều .