cho x^2+y^2=1 tìm gtnn của (3-x)(3-y)
a Cho x + y = 5 tìm GTNN của
A = |x+1| + |y-2|
b Cho x - y = 2 Tìm GTNN của
B = |2x+1| + |2y+1|
c Cho 2x+y = 3 Tìm GTNN của
C = |2x+3| + |y+2| +2
GIÚP MÌNH NHA MAI NỘP RỒI!!!!!!!!!!
a) Ta có : \(A=\left|x+1\right|+\left|y-2\right|\)
\(\ge\left|x+1+y-2\right|\)
\(=\left|x+y-1\right|=\left|5-1\right|=\left|4\right|=4\)
Dấu "=" xảy ra <=> (x + 1)(y - 2) \(\ge\)0
Vậy Min A = 4 <=> (x + 1)(y - 2) \(\ge\)0
BÀI 5 : CHO x-y=3 tìm giá trị của B=|x-6|+|y+1|
BÀI 6: Cho x-y=2 tìm gtnn của biểu thức C=|2x+1|+|2y+1|
BÀI 7: Cho 2x+y=3 tìm gtnn của biểu thức D=|2x+3|+|y+2|+2
Cho x+y=1.. Tìm GTNN của x^3+y^3+x^2+y^2
bạn nhớ thêm đk là thực dương !
Sử dụng BĐT Bunhiacopxki dạng phân thức ta có : \(x^3+y^3=\frac{x^4}{x}+\frac{y^4}{y}\ge\frac{\left(x^2+y^2\right)^2}{x+y}\ge\frac{\left[\frac{\left(x+y\right)^2}{2}\right]^2}{1}=\frac{\frac{1}{2^2}}{1}=\frac{\frac{1}{4}}{1}=\frac{1}{4}\)
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{1^2}{2}=\frac{1}{2}\)
Cộng theo vế các bất đẳng thức cùng chiều ta được :
\(x^3+y^3+x^2+y^2\ge\frac{1}{4}+\frac{1}{2}=\frac{3}{4}\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)
Đặt \(A=x^3+y^3+x^2+y^2\)
\(\Rightarrow A=\left(x+y\right)^3-3xy\left(x+y\right)+x^2+y^2\)
Thay \(x+y=1\)vào biểu thức ta được:
\(A=1-3xy+x^2+y^2=\left(x^2+2xy+y^2\right)-5xy+1\)
\(=\left(x+y\right)^2-5xy+1=-5xy+2\)
Áp dụng bđt \(\left(a+b\right)^2\ge4ab\)ta có: \(1^2\ge4xy\)\(\Rightarrow xy\le\frac{1}{4}\)
\(\Rightarrow-5xy\ge\frac{-5}{4}\)\(\Rightarrow-5xy+2\ge\frac{-5}{4}+2=\frac{3}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy \(minA=\frac{3}{4}\Leftrightarrow x=y=\frac{1}{2}\)
1. Cho a>=2. Tìm GTNN của P= a + 1/a2.
2. Cho x và y >0 thỏa mãn x+y+xy=1
Tìm GTNN của P=1/x+y +1/x +1/y
3.Cho x và y thuộc tâp hợp số R thỏa mãn x + y =1
Tìm GTNN của P= x3 + y3 +xy.
Làm ơn giải giùm mình nhé!
3.
P=(x+y)(x^2-xy+y^2)+xy
P=x^2+y^2-xy+xy
P=x^2+y^2
cho x^2+y^2=1 tìm gtnn của (3-x)(3-y)
1. Cho a>=2. Tìm GTNN của P= a + 1/a.
2. Cho x và y >0 thỏa mãn x+y+xy=1
Tìm GTNN của P=1/x+y +1/x +1/y
3.Cho x và y thuộc tâp hợp số R thỏa mãn x + y =1
Tìm GTNN của P= x3 + y3 +xy.
Làm ơn giải giùm mình nhé!
1. Cho a>=2. Tìm GTNN của P= a + 1/a.
2. Cho x và y >0 thỏa mãn x+y+xy=1
Tìm GTNN của P=1/x+y +1/x +1/y
3.Cho x và y thuộc tâp hợp số R thỏa mãn x + y =1
Tìm GTNN của P= x3 + y3 +xy.
Làm ơn giải giùm mình nhé!
bài 2 nhân p vs x+y+xy rồi t định áp dụng bđt (x+y+z)(1/x+1/y+1/z)>=9 nhưng vướng
1. Cho a>=2. Tìm GTNN của P= a + 1/a.
2. Cho x và y >0 thỏa mãn x+y+xy=1
Tìm GTNN của P=1/x+y +1/x +1/y
3.Cho x và y thuộc tâp hợp số R thỏa mãn x + y =1
Tìm GTNN của P= x3 + y3 +xy.
Làm ơn giải giùm mình nhé!
1) cho x>0,y>0 thỏa mãn x+y=1.tìm GTNN của biểu thức P= 1/xy+2/x^2+y^2
2)cho x>0,y>0 và x+y=1.tìm GTNN của M=3/xy+2/x^2+y^2
3)tìm GTNN và GTLN của
N= 2x+1/x^2+2
Q= 2x^2-2x+9/x^2+2x+5
R=2(x^2+x+1)/x^2+1
Cho x+y=1. Tìm GTNN của x^3+y^3+x^2+y^2