Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hữu Nguyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2021 lúc 11:21

Ta có: \(A=x^2-4y^2+x-2y\)

\(=\left(x-2y\right)\left(x+2y\right)+\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x+2y+1\right)\)

Linh Leo
Xem chi tiết
Fudo
22 tháng 1 2020 lúc 8:15

                                                             Bài giải

Gỉa sử :

\(A=M=x+1=\frac{8-x}{x-3}\)

\(\Rightarrow\text{ }\left(8-x\right)\left(x+1\right)=\left(x-3\right)\)

\(8x+8-x^2-x=x-3\)

\(7x+8-x^2=x-3\)

\(7x+8-x^2-x=3\)

\(6x+8-x^2=3\)

\(x\left(x+6\right)=-5\)

\(\Rightarrow\text{ }x\inƯ\left(5\right)\)    ( Nếu x thuộc Z hay N thì làm tiếp nhưng nếu không có thì mình làm được đến đây thôi ! )

Khách vãng lai đã xóa
Me
22 tháng 1 2020 lúc 9:00

Thiếu đề ! x thuộc Z hay N...

Khách vãng lai đã xóa
dadasda
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2023 lúc 13:42

a: Thay a=-1 và b=1 vào A, ta được:

\(A=5\cdot\left(-1\right)^3\cdot1^8=5\cdot\left(-1\right)\cdot1=-5\)

b: Thay a=-1 và b=2 vào B, ta được:

\(B=-9\cdot\left(-1\right)^4\cdot2^2=-9\cdot4=-36\)

HOANG THI NGOC ANH
Xem chi tiết
Edogawa Conan
1 tháng 10 2017 lúc 16:09

Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)

\(=\left(x+y\right)^3=1^3=1\)

Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)

Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)

\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)

\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)

\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)

\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)

tran thu yuen
Xem chi tiết
Khoa Bảo Dương
6 tháng 8 2017 lúc 20:04

1=13500

2=103500

who am I
Xem chi tiết
Quốc Đạt
11 tháng 2 2019 lúc 20:21

Hỏi đáp Toán

bạn xài cái này gõ công thức ra đi

Hải Đăng
11 tháng 2 2019 lúc 20:33

a) \(A=\left[\dfrac{x+2}{x^2-x}+\dfrac{x-2}{x^2+x}\right].\dfrac{x^2-1}{x^2-x}\)

\(A=\left[\dfrac{x+2}{x\left(x-1\right)}+\dfrac{x-2}{x\left(x+1\right)}\right].\dfrac{x^2-1}{x^2+2}\)

\(A=\left[\dfrac{\left(x+2\right)\left(x+1\right)+\left(x-2\right)\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\right].\dfrac{x^2-1}{x^2+2}\)

\(A=\left[\dfrac{x^2+2x+x+2+x^2-2x-x+2}{x\left(x-1\right)\left(x+1\right)}\right].\dfrac{x^2-1}{x^2+2}\)

\(A=\dfrac{2x^2+4}{x\left(x^2-1\right)}.\dfrac{x^2-1}{x^2+2}\)

\(A=\dfrac{2\left(x^2+2\right)\left(x^2-1\right)}{x\left(x^2-1\right)\left(x^2+2\right)}=\dfrac{2}{x}\)

b) Thay \(x=-200\) vào biểu thức \(A=\dfrac{2}{x}\) ta được :

\(A=\dfrac{2}{x}=\dfrac{2}{-200}=\dfrac{-2}{200}=\dfrac{-1}{100}\)

winx xinh dep
Xem chi tiết
theanhhifi9t
27 tháng 11 2015 lúc 18:26

a,500+8075=8575

b,8075-500=7575

**** minh nhe !

Nhoc Ti Dang Yeu
Xem chi tiết
Đặng Nguyễn Khánh Uyên
30 tháng 1 2017 lúc 10:19

a. Tại x=\(\frac{-1}{2}\), ta có:

 \(\left(\frac{-1}{2}\right)^2+4.\left(\frac{-1}{2}\right)+3=\frac{1}{4}+\left(-2\right)+3=\frac{5}{4}\)

b. Ta có:

 \(x^2+4x+3=0\)

\(\Rightarrow x^2+x+3x+3=0\)

\(\Rightarrow\left(x^2+x\right)+\left(3x+3\right)=0\)

\(\Rightarrow x\left(x+1\right)+3\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right)\left(x+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x+1=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\x=-3\end{cases}}}\)

Vậy \(x=-1;x=-3\)

thinh le
Xem chi tiết