(2x+1).(y-5)=12
tìm các cặp số tự nhiên x;y
help me
chu mi na
tìm các cặp số tự nhiên x y
( x -1).(y+5)=28
( 2x -1).(y + 1)=30
Trong các cặp số tự nhiên (x;y)thỏa mãn (2x+1).(y-3)cặp số thỏa mạn x;y?
Tìm các cặp số tự nhiên x,y sao cho:
a)(x-5).(y+1)=6
b)(2x-1).(2y+1)=15
a)
+) x, y là số tự nhiên => x-5 , y+1 là số tự nhiên
+) 6=1.6=2.3
+) Em có thể kẻ bảng hoặc tách theo trường hợp:
th1: x-5=1, y+1=6 => x=6, y=5
Th2: x-5=6, y+1=1=>..
Th3: x-5=3, y+1=2=>...
Th4: x-5=2, y+1=3=> ...
b) Câu b làm tương tự nhé: 15=1.15=3.5. Cũng có 4 trường hợp:)
trong các cặp số tự nhiên (x;y) thỏa mãn (2x+1).(y-3)=10.cặp số x,y lớn nhất là bao nhiêu
a) Tìm tất cả các cặp số tự nhiên (x,y) sao cho: 4x+5y=35
b) Tìm tất cả các cặp số tự nhiên khác 0 (x,y) sao cho: (2x+5).(x+2)=3y
c) Tìm các số nguyên tố x,y thỏa mãn: 272x=11y+29
d) Chứng minh rằng với mọi số tự nhiên n thì: (10n+72n-1) chia hết cho 81
d 10^n+72^n -1
=10^n -1+72n
=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n
=9[10^(n-1)+10^(n-2)+..........................-9n+81n
Tìm các cặp số tự nhiên x;y biết: (2x-1)(y+3)=12
\(\left(2x-1\right)\left(y+3\right)=12\)
\(\Rightarrow2x-1=12\)
\(2x=12+1\)
\(2x=13\)
\(x=\dfrac{13}{2}\)
\(\Rightarrow y+3=12\)
\(y=12-3\)
\(y=9\)
Vậy \(x=\dfrac{13}{2}\) và \(y=9\)
\(\left(2x-1\right)\left(y+3\right)=12\)
Ư(12) = {-1,-2,-3,-4,-6,-12,1,2,3,4,6,12}
=> Ta có bảng:
2x - 1 | -1 | -2 | -3 | -4 | -6 | -12 | 1 | 2 | 3 | 4 | 6 | 12 |
y + 3 | -12 | -6 | -4 | -3 | -2 | -1 | 12 | 6 | 4 | 3 | 2 | 1 |
x | 0 | \(-\dfrac{1}{2}\) | -1 | \(-\dfrac{3}{2}\) | \(-\dfrac{5}{2}\) | \(-\dfrac{11}{2}\) | 1 | \(\dfrac{3}{2}\) | 2 | \(\dfrac{5}{2}\) | \(\dfrac{7}{2}\) | \(\dfrac{13}{2}\) |
y | -15 | -9 | -7 | -6 | -5 | -4 | 9 | 3 | 1 | 0 | -1 | -2 |
Vậy từ bảng giá trị ta có các cặp số tự nhiên x,y thỏa mãn là: (1,9); (2,1)
Trong các cặp số tự nhiên (x;y) thỏa mãn (2x+1)(y-3)=10, cặp số cho tích x;y lớn nhất là
Vì 10 = 2 * 5 = 1 * 10 nên có các trường hợp sau
- Trường hợp 1: 2x + 1 = 10, y - 3 = 1 (loại, vì 2x + 1 lẻ)
- Trường hợp 2: 2x + 1 = 1, y - 3 = 10 => x = 0, y = 13
- Trường hợp 3: 2x + 1 = 2, y - 3 = 5 (loại)
- Trường hợp 4: 2x + 1 = 5, y - 3 = 2 => x = 2, y = 5
Vậy cặp số cho tích xy lớn nhất là (2,5)
Do 10 = 1.10 =10.1 = 2.5 = 5.2
Mà 2x + 1 lẻ nên 2x + 1 = 1 hoặc 2x + 1 = 5
=> x = 0 hoặc 2 nhưng x = 0 thì x.y = 0 nên ta chọn x = 2 khi đó y - 3 = 2
=> y = 5
tìm các cặp số tự nhiên x y sao cho (2x-1)(y+3)=12
\(\left(2x-1\right)\left(y+3\right)=12\)
\(Ư\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
Vì x,y là cặp số tự nhiên nên giá trị của 2x-1 và y+3 sẽ nằm trong tập ước của 12.
Mà 2x-1 là số nguyên nên 2x-1 là một số lẻ, vậy giá trị có thể xảy ra của x được thu hẹp là: \(1;3\)
2x-1 | 1 | 3 |
y+3 | 12 | 4 |
x | 1 | 2 |
y | 9 | 1 |
tô ngán toán nâng cao lớp 6 lắm rồi thề luôn
\(\text{Gọi ƯCLN(2x+5;x+2)=d}\left(d\in N\right)\)
\(\text{Ta có:}\)
\(\text{2x+5⋮d;x+2⋮d}\)
\(\Rightarrow\text{2x+5⋮d;2(x+2)⋮d}\)
\(\Rightarrow\text{2x+5⋮d;2x+4⋮d}\)
\(\Rightarrow\text{2x+5-(2x+4)⋮d}\)
\(\Rightarrow\text{2x+5-2x-4⋮d}\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{1\right\}\Rightarrow d=1\)
\(\Rightarrow\text{ƯCLN}\left(2x+5;x+2\right)=1\)
\(\Rightarrow\text{2x+5 không chia hết cho 3 hoặc x+2 không chia hết cho 3 hoặc cả hai không chia hết cho 3}\)
\(\text{TH1:2x+5 không chia hết cho 3;x+2 chia hết cho 3}\)
\(\Rightarrow\left(2x+5\right).\left(x+2\right)\ne3y\)
\(\Rightarrow\text{Không có cặp số (x,y) thỏa mãn}\)
\(\text{TH2:2x+5 chia hết cho 3;x+2 không chia hết cho 3}\)
\(\Rightarrow\left(2x+5\right).\left(x+2\right)\ne3y\)
\(\Rightarrow\text{Không có cặp số (x,y) thỏa mãn}\)
\(\text{TH3:2x+5 không chia hết cho 3;x+2 không chia hết cho 3}\)
\(\Rightarrow\left(2x+5\right).\left(x+2\right)\ne3y\)
\(\Rightarrow\text{Không có cặp số (x,y) thỏa mãn}\)
\(\text{Vậy không có cặp số tự nhiên (x,y) thỏa mãn}\)
1- Tìm các cặp số tự nhiên (x;y) thỏa mãn: X^6-x^4+2x^3+2x^2=y^2