Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 3 2017 lúc 3:13

a. Do BC > AC > AB ⇒ ∠A > ∠B > ∠C

Ta có AB2 + AC2 = 62 + 82 = 100 = 102 = BC2

Vậy tam giác ABC vuông tại A (1 điểm)

Nguyễn Văn Việt
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 2 2022 lúc 18:54

a: Xét ΔABC có AB<BC<AC

nên \(\widehat{C}< \widehat{A}< \widehat{B}\)

b: XétΔABC có \(AC^2=BA^2+BC^2\)

 nên ΔABC vuông tại B

Nguyễn Huy Tú
19 tháng 2 2022 lúc 18:55

a, Ta có AC > BC > AB 

=> ^B > ^A > ^C 

b, Ta có \(AC^2=AB^2+BC^2\Leftrightarrow100=64+36\)*đúng* 

Vậy tam giác ABC vuông tại B

Taurus gaming VN
19 tháng 2 2022 lúc 18:56

a) B>A>C|b)tâm giác ABC là tam giác vuông cân

 

Bà HOÀng Thả ThÍnh
Xem chi tiết
Dương Mạnh Quyết
21 tháng 12 2021 lúc 10:21

bài 2:

ta có: AB<AC<BC(Vì 3cm<4cm<5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

Khách vãng lai đã xóa
Lưu Nguyễn Hà An
15 tháng 2 2022 lúc 9:04

bài 2:

ta có: AB <AC <BC (Vì 3cm <4cm <5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

HT mik làm giống bạn Dương Mạnh Quyết

Nguyễn Xuân Trường
Xem chi tiết
Trường
1 tháng 7 2019 lúc 15:36

a. Ta có: AB = 6cm, AC = 10cm, BC = 8cm.

+Cạnh AB đối diện với góc C

+Cạnh AC đối diện với góc B

+Cạnh BC đối diện với góc A

Vì AC > BC > AB nên B > A > C

Nguyễn Xuân Trường
Xem chi tiết
Song Ngư (๖ۣۜO๖ۣۜX๖ۣۜA)
6 tháng 7 2019 lúc 15:46

a) Ta có: AB<BC<AC (vì 6<8<10)

=> góc C < góc A < góc B (quan hệ giữa góc và cạnh đối diện)

b) Nhận thấy: \(AB^2+BC^2=6^2+8^2=36+64=100\)

                      \(AC^2=10^2=100\)

\(\Rightarrow AB^2+BC^2=AC^2\left(=100\right)\)

Theo định lí Pi-ta-go đảo thì tam giác ABC có độ dài 3 cạnh như trên là tam giác vuông.

  c)         A C B M

   Ta có: MA + MC < AC  (bất đẳng thức trong tam giác ACM)

    => MA + MC < AC + AB (ĐPCM) 

Nguyễn Xuân Trường
6 tháng 7 2019 lúc 16:37

tks bạn

Phạm Hương
Xem chi tiết
Nguyễn Viết Ngọc
19 tháng 7 2019 lúc 16:28

a ) Ta có : AB < AC < BC ( 6 < 8 < 10 )

=> \(\widehat{C}< \widehat{B}< \widehat{A}\)( quan hệ giữa góc và cạnh đối diện )

b ) \(\Delta ABC\)có : AB2 + AC2 = 62 + 82 = 100

                             BC2 = 102 = 100

=> AB2 + AC2 = BC2

Theo đ/l Py-ta-go => Tam giác ABC là tam giác vuông

c ) DH \(\perp\)BC => Tam giác BHD vuông

Xét 2 tam giác vuông : \(\Delta BHD\)và \(\Delta BAD\)có :

BD là cạnh chung

\(\widehat{ABD}=\widehat{HBD}\)( do BD là tia p/g của góc B )

=> Tam giác BHD = tam giác BAD

=> \(\widehat{BDA}=\widehat{BDH}\)

=> DB là tia p/g của góc ADN

d ) tự làm

Phạm Hương
Xem chi tiết
Chi Chi
Xem chi tiết
Edogawa Conan
19 tháng 7 2019 lúc 16:25

A B C D H M

Giải: a) Ta có: AB < AC < BC(6cm < 8cm< 10cm)

=> \(\widehat{C}< \widehat{B}< \widehat{A}\) (quan hệ giữa cạnh và góc đối diện)

b) Ta có: AB+ AC2 = 62 + 82 = 36 + 64 = 100

         BC2 = 102 = 100

=> AB2 + AC2 = BC2

=> t/giác ABC là t/giác vuông (theo định lí Pi - ta - go đảo)

c) Xét t/giác ABD và t/giác HBD

có: \(\widehat{A}=\widehat{BHD}=90^0\)

   BD : chung

  \(\widehat{ABD}=\widehat{HBD}\)(gt)

=> t/giác ABD = t/giác HBD (ch - gn)

=>\(\widehat{ADB}=\widehat{HDB}\) (2 góc t/ứng)

=> DB là tia p/giác của góc ADH

d) Xét t/giác ADM và t/giác HDC

có: \(\widehat{MAD}=\widehat{DHC}=90^0\)

  AD = HD (vì t/giác ABD = t/giác HBD)

   \(\widehat{ADM}=\widehat{HDC}\) (đối đỉnh)

=> t/giác ADM = t/giác HDC (g.c.g)

=> AM= HC (2 cạnh t/ứng)

Mà AB + AM = BM 

   BH +  HC = BC

và AB = BH (vì t/giác ABD = t/giác HBD) ; AM = HC (cmt)

=> BM = BC => t/giác AMC cân tại B

=> \(\widehat{M}=\widehat{C}=\frac{180^0-\widehat{B}}{2}\) (1)

Ta có: AB = HB (vì t/giác ABD  = t/giác HBD)

=> t/giác ABH cân tại B

=> \(\widehat{BAH}=\widehat{BHA}=\frac{180^0-\widehat{B}}{2}\) (2)

Từ (1) và (2) => \(\widehat{M}=\widehat{BAH}\)

Mà 2 góc này ở vị trí đồng vị

=> CM // AH

Hà Anh Thư
Xem chi tiết
Yen Nhi
23 tháng 5 2021 lúc 9:09

Câu 4: Cho tam giác ABC vuông tại A có AB = 8cm, AC = 6cm.

a, Tính độ dài cạnh BC của tam giác ABC.

b, Trên tia đối của ria AB lấy điểm D sao cho AD = AB, đường trung tuyến BK của tam giác BCD cắt AC tại E. Tính độ dài các đoạn thẳng EC và EA.

c, Chứng minh CB = CD.

* Hình tự vẽ 

a)

Áp dụng định lý Pytago ta tính được cạnh huyền BC = 10cm

b)

Xét tam giác DBC, ta có:

BK là trung tuyến ứng với cạnh CD ( gt )

CA là trung tuyến ứng với cạnh BD ( AB = AD )

BK giao với CA tại E

=> E là trọng tâm của tam giác BDC

=> CE = \(\frac{2AC}{3}\)= 4cm ; AE = 2cm

c)

Xét tam giác BDC, ta có:

CA là trung tuyến ứng với cạnh BD

CA là đường cao ứng với cạnh BD

=> Tam giác BDC cân tại C

=> CB = CD

Khách vãng lai đã xóa
Yen Nhi
23 tháng 5 2021 lúc 9:24

Câu 5: Cho tam giác ABC có góc A = 50 độ, góc B = 60 độ, góc C = 70 độ. Hãy so sánh các cạnh của tam giác ABC

B A C

Theo đề ra: Góc A = 50 độ

                   Góc B = 60 độ

                   Góc C = 70 độ

=> Góc A < góc B < góc C

=> BC < AC < AB ( quan hệ giữa góc và cạnh đối diện trong một tam giác )

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 3 2019 lúc 13:27

Có AB < AC < BC ⇒ ∠C < ∠B < ∠A hay . ∠A > ∠B > ∠C . Chọn A