Cho phân số: A=\frac{n +4}{n-2}A=n−2n+4.
Có bao nhiêu số nguyên nn để AA là số nguyên?
8
10
6
7
cho A= \(\frac{5n+2}{2n+7}\)
a, tìm n để a có giá trị nguyên
b, có bao nhiêu số nguyên dương n<2016 để a là phân số tối giản
Cho phân số A = \(\frac{2n+3}{2n-3}\) với n là số nguyên. Tìm n để phân số A có giá trị là số nguyên.
Ta có :
\(A=\frac{2n+3}{2n-3}=\frac{2n-3+6}{2n-3}=1+\frac{6}{2n-3}\)
để A \(\in\)Z \(\Leftrightarrow\)\(1+\frac{6}{2n-3}\)\(\in\)Z \(\Leftrightarrow\)\(\frac{6}{2n-3}\)\(\in\)Z \(\Leftrightarrow\)2n - 3 \(\in\)Ư ( 6 ) = { 1 ; -1 ; 2 ; -2 ; 3 ; -3 ; 6 ; -6 }
Lập bảng ta có :
2n-3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 2 | 1 | 5/2 | 1/2 | 3 | 0 | 9/2 | -3/2 |
vì n \(\in\)Z nên n = { 2 ; 1 ; 3 ; 0 }
Ta có : \(A=\frac{2n+3}{2n-3}=\frac{\left(2n-3\right)+6}{2n-3}=1+\frac{6}{2n-3}\)
Để \(A\in N\) thì \(\frac{6}{2n-3}\in N\)
\(\Rightarrow6⋮2n-3\)
\(\Leftrightarrow2n-3\inƯ_{\left(6\right)}=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Ta có bảng sau :
2n-3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
2n | 4 | 2 | 5 | 1 | 6 | 0 | 9 | -3 |
n | 2 | 1 | 2,5 | 0,5 | 3 | 0 | 4,5 | -1,5 |
Vậy ...
Đ/k : \(n\ne\frac{3}{2}\)
Để \(A\in Z\)
\(\Leftrightarrow\frac{2n+3}{2n-3}\in Z\)
\(\Leftrightarrow2n+3⋮2n-3\)
\(\Leftrightarrow2n-3+6⋮2n-3\)
\(\Leftrightarrow6⋮2n-3\)
\(\Leftrightarrow2n-3\inƯ\left(6\right)\)
\(\Leftrightarrow2n-3\in\left\{1;-1;6;-6\right\}\)
\(\Leftrightarrow2n\in\left\{4;2;9;-3\right\}\)
\(\Leftrightarrow n\in\left\{2;1;\frac{9}{2};-\frac{3}{2}\right\}\)
Mà \(n\in Z\)
\(\Rightarrow n\in\left\{2;1\right\}\)
Vậy ...
Cho biểu thức A=2n+4/n+3 .a) Số nguyên n phải có điều kiện gì để A là phân số/b) Tìm tất cả số nguyên n để A có giá trị nguyên(giúo mk vs ạ)
a: Để A là phân số thì n+3<>0
hay n<>-3
b: Để A là số nguyên thì \(2n+6-2⋮n+3\)
\(\Leftrightarrow n+3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{-2;-4;-1;-5\right\}\)
Cho phân số A=5n+2/2n+7 (n thuộc z)
a)Tìm n thuộc z để A có giá trị bằng 7/9
b)Tìm n thuộc z để A có giá trị là số nguyên
c)Có bao nhiêu số nguyên dương n bé hơn 2016 để A là phân số tối giản ?
Cho phân số A= \(\frac{5n+2}{2n+7}\)( n thuộc Z )
a, Tìm n để A có giá trị = \(\frac{7}{9}\)
b, Tìm n thuộc Z nhận giá trị nguyên
c, Có bao nhiêu số nguyên n < 2016 để a là phân số tối giản
Giúp mik vs ạ, mik đag cần gấp. Mik sẽ tik cho ạ
a, (5n+2)9 = (2n+7)7
45n+18=14n+49
31n=31
n=1
a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)
\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)
\(\Leftrightarrow45n+18=14n+49\)
\(\Leftrightarrow31n=31\)
\(\Leftrightarrow n=1\)
n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)
Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.
\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)
Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)
Ta có bảng:
2n + 7 | 1 | -1 | 31 | -31 |
n | -3 | -4 | 12 | -19 |
KL | TM | TM | TM | TM |
Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)
c
Cho biểu thức A=-4n+2/2n-4 .a) Tìm điều kiện của n để A là phân số /b) Tìm các số nguyên n để A có giá trị nguyên (giúp mk vs ạ)
a) A là phân số <=>2n-4\(\ne0\)
<=>2n\(\ne\)4
<=>n\(\ne\)2
b)Với n\(\ne2\)
A=\(A=\dfrac{-4n+2}{2n-4}=\dfrac{-4n+8-6}{2n-4}=\dfrac{-2\left(2n-4\right)-6}{2n-4}=-2+\dfrac{-6}{2n-4}\)
A có giá trị nguyên <=>-6 chia hết cho 2n-4
<=>2n-4 là ước của -6
<=>2n-4\(\varepsilon\){-6;-3;-2;-1;1;2;3;6}
2n-4 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
2n | -2 | 1 | 2 | 3 | 5 | 6 | 7 | 10 |
n | -1 | 0.5 | 1 | 1.5 | 2.5 | 3 | 3.5 | 5 |
TM | KTM | TM | KTM | KTM | TM | KTM | TM |
Cho n là một số nguyên.
a) Với giá trị nào của n thì 4/2n là phân số?
b) Tìm các giá trị của n để 4/2n có giá trị là số nguyên?
2n\(\ne\) 0
2n=0
n=0/2=0
=>n\(\ne\) 2 thì 4/2n là phân số
để 4/2n là số nguyên thi 4\(⋮\) 2n
=>2n\(\in\) Ư (4)
2n=1
n=1/2 loại
2n=2
n=2/2=1 chọn
2n=4
n=4/2=2 chọn
Cho A = 5n+2/2n+7. Hỏi có bao nhiêu số nguyên dương n < 2016 để A là phân số tối giản
Giả sử 5n+2 và 2n+7 cùng chia hết cho một số nguyên tố d(d€ N*)
=>5n+2˙:d;2n+7˙:d
=>2(5n+2)˙:d;5(2n+7)˙:d
=>5(2n+7)-2(5n+2)˙:d
=>10n+35-10n-4˙:d
=>31˙:d=>d=31
=>5n+2˙:31 và 2n+7˙:31
2n+7˙:31=>2n+7-31˙:31
=>2n-24˙:31=>2(n-12)˙:31
=>n-12˙:31(vì 2 và 31 nguyên tố cùng nhau)
=>n-12=31q(q€Z)
=>n=31q+12
=>A là ps tối giản thì n khác31q+12
n là số nguyên dương <2016
=>0<31q+12<2016
=>-12<31q<2004
=>-12/31<q<2004/31
=>0<=q<64,6
=>q nhận 65 gtrị để A là ps tối giản
Tìm số nguyên n để phân số sau có giá trị nguyên:
a) A = \(\frac{3n+9}{n-4}\)
b) B = \(\frac{6n+5}{2n-1}\)
c) C = \(\frac{n^2+2n-4}{n+1}\)
a) Để A có giá trị nguyên thì \(3n+9⋮n-4\)
\(\Rightarrow3n-9-3.\left(n-4\right)⋮n-4\)
\(\Rightarrow3n-9-3n+12⋮n-4\)
\(\Rightarrow3⋮n-4\Rightarrow n-4\inƯ\left(3\right)\)
\(\Rightarrow n-4\in\left\{-1;-2;-4;1;2;4\right\}\)
\(\Rightarrow n\in\left\{3;2;0;5;6;8\right\}\)
b) Để B có giá trị nguyên thì \(6n+5⋮2n-1\)
\(\Rightarrow6n+5-3.\left(2n-1\right)⋮2n-1\)
\(\Rightarrow6n+5-6n+3⋮2n-1\)
\(\Rightarrow8⋮2n-1\Rightarrow2n-1\inƯ\left(8\right)\)
Mà 2n - 1 là số lẻ \(\Rightarrow2n-1\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{0;1\right\}\)
* Để A có giá trị nguyên thì 3n + 9 chia hết cho n - 4
Có 3n + 9 = 3. ( n - 4 ) + 21 chia hết cho n - 4
Mà 3. ( n - 4 ) chia hết cho n - 4
3 . ( n - 4 ) + 21 chia hết cho n - 4 <=> 21 chia hết cho n - 4
=> n - 4 thuộc U ( 21 ) = { 1 ; 3 ; 7 ; 21 }
n - 4 = 1 => n = 5
n - 4 = 3 => n = 7
n - 4 = 7 => n = 11
n - 4 = 21 => n = 25
Vậy n = { 5 ; 7 ; 11 ; 25 }
Bài giải
Ta có : \(A=\frac{3n+9}{n-4}\) có giá trị nguyên khi \(3n+9\text{ }⋮\text{ }n-4\)
\(A=\frac{3n+9}{n-4}=\frac{3\left(n-4\right)+12+9}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{12+9}{n-4}=3+\frac{21}{n-4}\)
\(\Rightarrow\text{ }A\) đạt giá trị nguyên khi \(21\text{ }⋮\text{ }n-4\)
\(\Leftrightarrow\text{ }n-4\inƯ\left(21\right)=\left\{\pm1\text{ ; }\pm3\text{ ; }\pm7\text{ ; }\pm21\right\}\)
\(\Rightarrow\text{ }\) n - 4 = -1 \(\Rightarrow\) n = - 1 + 4 \(\Rightarrow\) n = 3
n - 4 = 1 \(\Rightarrow\) n = 1 + 4 \(\Rightarrow\) n = 5
n - 4 = - 3 \(\Rightarrow\) n = -3 + 4 \(\Rightarrow\) n = 1
n - 4 = 3 \(\Rightarrow\) n = 3 + 4 \(\Rightarrow\) n = 7
n - 4 = -7 \(\Rightarrow\) n = - 7 + 4 \(\Rightarrow\) n = -3
n - 4 = 7 \(\Rightarrow\) n = 7 + 4 \(\Rightarrow\) n = 11
n - 4 = - 21 \(\Rightarrow\) n = - 21 + 4 \(\Rightarrow\) n = - 17
n - 4 = 21 \(\Rightarrow\) n = 21 + 4 \(\Rightarrow\) n = 25
Vậy A đạt giá trị nguyên khi \(n\in\left\{3\text{ ; }5\text{ ; }1\text{ ; }7\text{ ; }-3\text{ ; }11\text{ ; }-17\text{ ; }25\right\}\)