A=1-2+3-4+5-6+.....+199-200. tính A
Tính tỉ số A/B biết:
A= 1/1*2+1/3*4+1/5*6+...+1/199+200
B= 1/101*200+1/102*199+...+1/200*101
Tính tỉ số A/B biết:
A= 1/1*2+1/3*4+1/5*6+...+1/199+200
B= 1/101*200+1/102*199+...+1/200*101
A = \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Lại có B = \(\frac{1}{101.200}+\frac{1}{102.199}+...+\frac{1}{200.101}\)
=> 301B = \(\frac{301}{101.200}+\frac{301}{102.199}+...+\frac{301}{200.101}\)
=> 301B = \(\frac{1}{101}+\frac{1}{200}+\frac{1}{102}+\frac{1}{199}+...+\frac{1}{200}+\frac{1}{101}=2\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)\)
=> B = \(\frac{2}{301}\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)\)
Khi đó \(\frac{A}{B}=\frac{\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)}{\frac{2}{301}\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)}=\frac{1}{\frac{2}{301}}=\frac{301}{2}=150,5\)
tính giá trị biểu thức A=1-2+3-4+5-6+...+199-200
A=(1-2)+(3-4)+...+(199-200)=(-1)+(-1)+...+(-1)=(-1)*100=-100
Cho A=1-2+3-4+5-6+.....+199-200
Tính giá trị của A
ta có: a= (1-2)+(3-4)+(5-6)+...+(199-200)
A= (-1)+(-1)+(-1)+...+(-1)
A= (-1) .( 200:2)
A= -1.100
A= -100
vaạy A=-100
Tính giá trị biểu thức A=1-2+3-4+5-6+...+199-200
Tính giá trị của biểu thức : A = 1 – 2 + 3 – 4 +5 – 6 + ⋯ + 199 – 200
Ta có: A = 1 – 2 + 3 – 4 +5 – 6 + ⋯ + 199 – 200
=(1-2)+(3-4)+(5-6)+..+(199-200)
=(-1)+(-1)+(-1)+..+(-1)
Tổng trên có số số -1 là: \(\frac{\left(200-1\right):1+1}{2}=100\)(số)
=> A=100.(-1)=-100
sorry mình chỉ biết kết quả thôi là -100.chuan 100% lun
Đáp số đúng, bình chọn cũng đúng!
cách làm làm tổng với số dưong liệu có hay hơn
1+[(-2+3)+(-4+5)+..+(-198+199)]-200
1+[....]-200
[...]=[1+..+1]=99
1+99-200=?
cho a/2 = 1/1*2*3+ 2/2*3*4+3/5*6*7+...+100/199*200*201 tính A/2
cho a=1/1*2+1/3*4+1/5*6+...+1/199*200
b=1/101+1/102+...+1/200
tính a/b
Ta có: \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
\(\Rightarrow A=B\)
Khi đó, \(\frac{A}{B}=1\)
Tính
A=1-2+3-4+...+199-200
B=1+2-3-4+5-6-...+97+98-99-100