Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
pansak9
Xem chi tiết
_lynnz._
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 22:25

a: Xét ΔABD và ΔAED có

AB=AE

góc BAD=góc EAD

AD chung

=>ΔABD=ΔAED

=>BD=ED
b: AB+BF=AF

AE+EC=AC

mà AB=AE và AF=AC

nên BF=EC

c: Xét ΔDBF và ΔDEC có

DB=DE

góc DBF=góc DEC

BF=EC

=>ΔDBF=ΔDEC

d: AF=AC

DF=DC

=>AD là trung trực của CF

=>AD vuông góc CF

Giúp mình với nha
Xem chi tiết
ngôlãmtân
Xem chi tiết
Phạm Thùy Dung
Xem chi tiết
Nguyễn Linh Chi
4 tháng 1 2020 lúc 17:40

E D A C B F I

a) Xét \(\Delta\)BAE và \(\Delta\)DAC có: ^BAE = ^DAC ( đối đỉnh ) ; AD = AB ( gt ) ; AE = AC ( gt )

=> \(\Delta\)BAE = \(\Delta\)DAC ( c.g.c)

=> BE = DC 

b) Tương tự câu a dễ dàng cm đc: \(\Delta\)ADE = \(\Delta\)ABC => ^ADE = ^ABC => DE//BC

=> ^EDI = ^DIC  mà ^EDI = ^BDI  ( DI là phân giác ^BDE ) 

=> ^DIC = ^BDI hay ^DIB = ^IDB => \(\Delta\)BDI cân tại B.

c) Ta có: ^DBC là góc ngoài tại đỉnh B của \(\Delta\)BDI => ^DBC = ^BDI + ^BID  = 2. ^BID  = 2. ^CIF( theo b) (1)

Có: CF là phân giác ^BCA =>^BCF = ^ACF => ^BCA = ^BCF + ^ACF = 2. ^BCF = 2. ^ICF  (2)

Lại có: ^CFD  là góc ngoài của \(\Delta\)FCI  => ^CFD = ^CIF + ^ICF  (3)

Từ (1) ; (2) ; (3) => 2 .^CFD = 2 ^CIF + 2. ^ICF = ^DBC + ^BCA = ^DBC + ^CED  (  ^CED = ^BCA  vì ED //BC )

Khách vãng lai đã xóa
Nguyễn Thế Việt
24 tháng 2 2022 lúc 15:28

098765432rtyuiorewerio65yuy5t

yyyyyyyyyyyyyyyyyyyyyyy

Khách vãng lai đã xóa
Nguyễn Thế Việt
24 tháng 2 2022 lúc 15:29

098ytrewq

Khách vãng lai đã xóa
nhanmadangyeu
Xem chi tiết
Nguyễn Ngọc Hải Vy
Xem chi tiết
Lê Thanh Thúy
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
7 tháng 7 2017 lúc 10:20

Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)

Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)