Tìm số nguyên tố x sao cho: x+1=y trong đó y là số nguyên tố.
AI LANH NHẤT ĐÂU
Tìm các số nguyên tố x, y sao cho x^y+1 cũng là số nguyên tố
Lời giải:
Nếu $x$ lẻ thì $x^y+1$ chẵn, mà $x^y+1>2$ với $x,y\in\mathbb{P}$ nên $x^y+1$ không thể là số nguyên tố (trái giả thiết)
Do đó $x$ chẵn $\Rightarrow x=2$
$x^y+1=2^y+1$
Nếu $y$ chẵn thì $y=2$. Khi đó $x^y+1=2^2+1=5$ cũng là snt (tm)
Nếu $y$ lẻ:
$x^y+1=2^y+1\equiv (-1)^y+1\equiv -1+1\equiv \pmod 3$
Mà $2^y+1>3$ với mọi $y$ nguyên tố lẻ nên $2^y+1$ không là snt (trái giả thiết)
Vậy $x=y=2$
Tìm các số nguyên tố x, y sao cho x^y+1 cũng là số nguyên tố
. Chứng tỏ rằng chia hết cho 13.1. Tìm số tự nhiên sao cho
a) là một số nguyên tố. b) là một số nguyên tố.
ai giúp em với ạ, mai em chữa đề cương câu này :((
bạn nói đi không mình không trả lời đâu
chắc kiểu này phải nhờ chị nguyễn lê phước thịnh rui đó
Cho hai số x,y là các số nguyên tố sao cho |x|+|y|=2.Khi đó x+y lớn nhất có giá trị là...?
Khi đó x+y có giá trị lớn nhất là 2
k mình nha
Cho hai số x,y là các số nguyên tố sao cho |x| +|y| =2.Khi đó x+y lớn nhất co s giá trị là...?
Khi đó x+y có giá trị lớn nhất là 2
k mình nha
x+y có giá trị lớn nhất là 2 nha
Câu 1: Cho 13 số nguyên, trong đó tổng của bốn số bất kì trong 13 số ấy là một số nguyên dương. Chứng tỏ tổng của 13 số ấy là một số nguyên dương.
Câu 2: Tìm các số nguyên tố x, y sao cho x2 + 45 = y2.
2,
-Ta có: \(x^2+45=y^2\)
\(\Leftrightarrow y^2>45\Rightarrow y\) là số ng tố lẻ
\(\Rightarrow x^2\)chẵn( vì: chẵn +5=lẻ)
\(\Rightarrow x=2\)
\(\Leftrightarrow2^2+45=y\)
\(\Leftrightarrow y=\pm\sqrt{49}=\pm7\)
-Mà: snt>0
-Vậy: \(x=2;y=7\)
1. Chứng minh phương trình : \(^{x^2-y^2=4z+2}\) không có nghiệm nguyên
2. Tìm số tự nhiên x sao cho x^2 + p là số chính phương trong đó p là số nguyên tố . Tương tự với x^2-p
3. Giải phương trình nghiệm nguyên x^2 - y^2 = p^s . Trong đó p là số nguyên tố , s là số nguyên dương .
giúp mình làm bài này với:tìm x
a,x+4=2mu0+1mu2019
b,1+1/3+1/6+1/10+....+1/x nhan (x+1):2
SO SÁNH
A=2011mu2010+1/2011mu2011+1 và B=2011mu2011+1/2011mu2012+1
Bài 1: Tìm số nguyên tố biết rằng số đó bằng tổng của hai số nguyên tố và bằng hiệu của hai số nguyên tố đó.
Bài 2: Tìm tất cả các số nguyên tố x,y,z sao cho \(x^2 - 6y^2 = 1\)
Bài 1 bạn tham khảo đi có trong các câu hỏi tương tự
Bài 2 : Ta có :
\(x^2-6y^2=1\)
\(\Rightarrow x^2-1=6y^2\)
\(\Rightarrow y^2=\frac{x^2-1}{6}\)
Nhận thấy \(y^2\inƯ\)của \(x^2-1⋮6\)
=> y2 là số chẵn
Mà y là số nguyên tố => y = 2
Thay vào : \(\Rightarrow x^2-1=4\cdot6=24\)
\(\Rightarrow x^2=25\Rightarrow x=5\)
Vậy x=5 ; y =2