Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Huyền Trang
Xem chi tiết
Ứng Hồ Hà Chi
8 tháng 11 2021 lúc 9:19

bài này lớp mấy dấy khó thế

Khách vãng lai đã xóa
Tăng Minh Đức
8 tháng 11 2021 lúc 9:33
Bài này lớp 6
Khách vãng lai đã xóa
Phạm Ngọc Minh Khánh
8 tháng 11 2021 lúc 9:53

Còn câu trả lời thì chưa ai đăng.

Khách vãng lai đã xóa
Kẹo Nek
Xem chi tiết
Hoàng Diễm Quỳnh
3 tháng 11 2023 lúc 10:10

không bt nữa

Nguyễn Đình Phong
8 tháng 1 lúc 20:12

Lồn cặc

 

Tien nu tinh yeu
Xem chi tiết
Tien nu tinh yeu
7 tháng 10 2018 lúc 14:36

AI NHANH MÌNH K , ĐANG CẦN GẤP

Trần Thế Minh Quân
7 tháng 10 2018 lúc 14:37

a)xét 2A =2+2^2+2^3+.....+2^2019

-A=1+2+2^2+...+2^2018

A=(2^2019)-1 <2^2019

b)theo câu a ta có A+1=2^2019-1+1=2^2019=2^(x+1)

2019=x+1 =>x=2018

Trần Thế Minh Quân
7 tháng 10 2018 lúc 14:39

c)theo câu b ta có A+1=2^2019=2.4^x=2^(1+2x)

=>2019=1+2x

tự làm nốt

Trần Bảo Ngọc
Xem chi tiết
minhnguvn(TΣΔM...???)
22 tháng 12 2021 lúc 22:09

A=2^0 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100

A=1 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100

A=1 + (2^1 + 2^2) + (2^3 + 2^4) + ....+(2^99 + 2^100)

A=1 + 2.(1+2) + 2^3.(1+2)+....+2^99.(1+2)

A=1 + 2 . 3 + 2^3 . 3 +....+2^99 . 3

A=1 +3 .(2+2^3+..+2^99)

=> A:3 dư 1

học tốt nhé bạn

Khách vãng lai đã xóa
Nguyễn Đăng Dư
22 tháng 12 2021 lúc 22:19

mik cũng vậy

Khách vãng lai đã xóa
Nguyễn Đăng Dư
22 tháng 12 2021 lúc 22:04

mik giúp nhưng nhớ k cho mik nha

Khách vãng lai đã xóa
Tho Nguyễn Văn
Xem chi tiết
Akai Haruma
28 tháng 1 2023 lúc 23:10

Lời giải:

$A=1+3+3^2+3^3+....+3^{2026}$

$=1+3+3^2+(3^3+3^4+3^5+3^6)+(3^7+3^8+3^9+3^{10})+....+(3^{2023}+3^{2024}+3^{2025}+3^{2026})$

$=13+3^2(3+3^2+3^3+3^4)+3^6(3+3^2+3^3+3^4)+...+3^{2022}(3+3^2+3^3+3^4)$

$=13+(3^2+3^6+...+3^{2022})(3+3^2+3^3+3^4)$

$=13+(3^2+3^6+...+3^{2022}).120$

$\Rightarrow A$ chia $120$ dư $13$

Tần Khải Dương
Xem chi tiết
Toru
22 tháng 12 2023 lúc 20:07

\(A=2^0+2^1+2^2+2^3+2^4+2^5+\dots+2^{100}\\=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+\dots+(2^{99}+2^{100})+2^0\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+\dots+2^{99}\cdot(1+2)+1\\=2\cdot3+2^3\cdot3+2^5\cdot3+\dots+2^{99}\cdot3+1\\=3\cdot(2+2^3+2^5+\dots+2^{99})+1\)

Vì \(3\cdot(2+2^3+2^5+\dots+2^{99})\vdots3\)

\(\Rightarrow 3\cdot(2+2^3+2^5+\dots+2^{99})+1\) chia \(3\) dư 1

hay số dư của phép chia \(A\) cho \(3\) là \(1\).

Lê Quang Khải
22 tháng 12 2023 lúc 20:10

A=2^0 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100

A=1 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100

A=1 + (2^1 + 2^2) + (2^3 + 2^4) + ....+(2^99 + 2^100)

A=1 + 2.(1+2) + 2^3.(1+2)+....+2^99.(1+2)

A=1 + 2 . 3 + 2^3 . 3 +....+2^99 . 3

A=1 +3 .(2+2^3+..+2^99)

=> A:3 dư 1

Nguyễn Mai Anh
Xem chi tiết
Mai Thanh Thảo
Xem chi tiết

có lời giải ko bạn

shitbo
15 tháng 1 2019 lúc 17:24

Đặt S=1+2+2^2+..........+2^2019

Vì: S có 2020 số hạng nên ta chia S thành:673 nhóm mỗi nhóm có  3 số hạng và thừa 1 số hạng như sau 

S=1+(2+2^2+2^3)+(2^4+2^5+2^6)+...........+(2^2017+2^2018+2^2019)

S=1+2(1+2+4)+2^4(1+2+4)+........+2^2017(1+2+4)

S=1+2.7+2^4.7+.....+2^2017.7

S=1+7(2+2^4+2^2017) chia 7 dư 1

Vậy: 1+2+2^2+2^3+..........+2^2019 chia 7 dư 1

Bùi Vương TP (Hacker Nin...
16 tháng 1 2019 lúc 19:46

Đặt S=1+2+2^2+..........+2^2019

Vì: S có 2020 số hạng nên ta chia S thành:673 nhóm mỗi nhóm có  3 số hạng và thừa 1 số hạng như sau 

S=1+(2+2^2+2^3)+(2^4+2^5+2^6)+...........+(2^2017+2^2018+2^2019)

S=1+2(1+2+4)+2^4(1+2+4)+........+2^2017(1+2+4)

S=1+2.7+2^4.7+.....+2^2017.7

S=1+7(2+2^4+2^2017) chia 7 dư 1

Vậy: 1+2+2^2+2^3+..........+2^2019 chia 7 dư 1

Đào Quang Thái
Xem chi tiết
meme
13 tháng 9 2023 lúc 14:14

Để tìm dư của phép chia 2^2017 cho biểu thức 1 + 2 + 2^2 + 2^3 + ... + 2^2013 + 2^2014, chúng ta có thể sử dụng định lý Fermat nhỏ.

Theo định lý Fermat nhỏ, nếu p là một số nguyên tố và a là một số tự nhiên không chia hết cho p, thì a^(p-1) ≡ 1 (mod p).

Trong trường hợp này, chúng ta có p = 2 và a = 2.

Ta biết rằng 2 không chia hết cho 2, vì vậy 2^(2-1) ≡ 1 (mod 2), nghĩa là 2^1 ≡ 1 (mod 2).

Do đó, ta có thể thấy rằng tất cả các mũ 2^k với k >= 1 đều có dư 1 khi chia cho 2.

Vì vậy, biểu thức 1 + 2 + 2^2 + 2^3 + ... + 2^2013 + 2^2014 có tổng là 2014 và có dư 0 khi chia cho 2.

Do đó, dư của phép chia 2^2017 cho biểu thức này cũng là 0.