Cho \(a^2+b^2=1\) Tìm GTNN, GTLN của \(a^3+b^3\)
Bài 2:Cho a,b là 2 số không âm thỏa a+b=2
a, tìm GTNN của P=a nhân b
b, tìm GTNN của Q=a^3+b^3
c, tìm GTLN của R=-a^2-2b+3
1. tìm GTNN của A= x(x+2)(x+4)(x+6)+8
2. tìm GTLN của B=5+(1-x)(x+2)(x+3)(x+6)3
3.tìm GTNN của C=(x+3)4 + (x-7)4
4. Cho x>0. Tìm GTNN của P=\(\dfrac{4x^2+1}{2x}\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
3.
Đặt $x+3=a; 7-x=b$ thì $a+b=10$
$C=a^4+b^4$
Áp dụng BĐT Bunhiacopxky:
$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$
$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$
$\Rightarrow a^2+b^2\geq 50$
$\Rightarrow C\geq \frac{50^2}{2}=1250$
Vậy $C_{\min}=1250$
Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$
a) TÌm GTNN của A=4/5+│2x-3│
b) Tìm GTLN của B=1/2(x-1)2+3
a, A= 4/5 + l 2x-3 l
vì lxl >hoặc= 0
=) l 2x-3 l >hoặc= 0
=) 4/5 + l 2x-3 l >hoặc= 4/5
=) A đạt GTNN là 4/5 khi 2x-3 = 0 =) x=3/2
b, B = 1/2(x-1)2+ 3
vì x2 > hoặc = 0 =) (x-1)2 > hoặc = 0
=) 1/2(x-1)2 > hoặc = 0
=) 1/2(x-1)2+ 3 > hoặc = 3
vậy GTNN của B=3 khi x-1=0=) x=1 (ở đây ko thể đc là GTLN bn ak vì sau 1/2(x-1)2 là dấu + và 1/2(x-1)2 luôn dương nên khi cộng 3 vào sẽ lớn hơn 3 )
Tìm GTNN hoặc GTLN của:
a) A=|2x-1|-4 (GTLN)
b) B = 1,5-|2-x| (GTLN)
c) C = |x-3|(GTNN)
d)D = 10-4|x-2|(GTLN)
a) Sửa đề: Tìm GTNN
A = |2x - 1| - 4
Ta có:
|2x - 1| ≥ 0 với mọi x ∈ R
⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R
Vậy GTNN của A là -4 khi x = 1/2
b) B = 1,5 - |2 - x|
Ta có:
|2 - x| ≥ 0 với mọi x ∈ R
⇒ -|2 - x| ≤ 0 với mọi x ∈ R
⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R
Vậy GTLN của B là 1,5 khi x = 2
c) C = |x - 3| ≥ 0 với mọi x ∈ R
Vậy GTNM của C là 0 khi x = 3
d) D = 10 - 4|x - 2|
Ta có:
|x - 2| ≥ 0 với mọi x ∈ R
⇒ 4|x - 2| ≥ 0 với mọi x ∈ R
⇒ -4|x - 2| ≤ 0 với mọi x ∈ R
⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R
Vậy GTLN của D là 10 khi x = 2
Cho a, b dương biết \(a^2+b^2=1\) Tìm GTNN,GTLN của \(a^3+b^3\)
Tìm GTLN và GTNN (nếu có) của M = \(\frac{4x+1}{x^2+3}\)
Cho a,b,c ? 0 và a + b + c = 3. Tìm GTNN của A = \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Áp dụng bdtd quen thuộc :
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Chứng minh bđt nha ( quên mất )
Áp dụng bđt Cauchy :
\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}}\)
Nhân từng vế của 2 bđt ta được đpcm
Dấu "=" khi \(a=b=c\)
\(M=\frac{4x+1}{x^2+3}\)
\(\Leftrightarrow Mx^2+3M=4x+1\)
\(\Leftrightarrow Mx^2-4x+3M-1=0\)(1)
*Nếu M = 0 thì x = -1/4
*Nếu M khác 0 thì (1) có nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow4-M\left(3M-1\right)\ge0\)
\(\Leftrightarrow4-3M^2+M\ge0\)
\(\Leftrightarrow-1\le M\le\frac{4}{3}\)
Chỉ mình cách tìm GTLN hay GTNN của biểu thức được không?
VD: Tìm GTLN của A = 1 - x^2 + 3*x
Tìm GTNN của B = x^2 - 5*x + 1
cho a,b,c>0 và a+b+c=3
tìm gtln của ab+bc+ca?
tìm gtnn của a/b2+1 + b/c2+1 + c/a2+1?
Ta có : a^2+b^2 +c^2 >= ab+bc+ac ==> a^2+b^2+c^2+2ab+2bc+2ac>=3(ab+bc+ac) => (ab+bc+ac)<= ((a+b+c)^2)/3 Dấu đẳng thức xảy ra khi và chỉ khi a=b=c Áp dụng : được Max B = 3 khi a=b=c=1
HT
a = b = c 1ht
TTLTL*
HHT