Bài 1: Giải phương trình
\(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)
Giải phương trình sau:
\(\frac{4}{2x^3+3x^2-8x-12}-\frac{1}{x^2-4}-\frac{4}{2x^2+7x+6}+\frac{1}{2x+3}=0\)
Bài 4: Giải các phương trình sau
a) 4(x+5)(x+6)(x+10)(x+12)=\(3x^2\)
b) \(\frac{1}{x^2-3x+3}+\frac{2}{x^2-3x+4}=\frac{6}{x^2-3x+5}\)
c) \(\frac{4x}{4x^2-8x+7}+\frac{3x}{4x^2-10x+7}=1\)
d) \(\frac{2x}{2x^2-5x+3}+\frac{13x}{2x^2+x+3}\)
a) 4 ( x + 5 )( x + 6 )( x + 10 )( x + 12 ) = 3x2
Do x = 0 không là nghiệm pt nên chia 2 vế pt cho \(x^2\ne0\), ta được :
\(\frac{4}{x^2}\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3\)
\(\Leftrightarrow4\left(x+\frac{60}{x}+17\right)\left(x+\frac{60}{x}+16\right)=3\)
Đến đây ta đặt \(x+\frac{60}{x}+16=t\left(1\right)\)
Ta được :
\(4t\left(t+1\right)=3\Leftrightarrow4t^2+4t-3=0\Leftrightarrow\left(2t+3\right)\left(2t-1\right)=0\)
Từ đó ta lắp vào ( 1 ) tính được x
Giải các phương trình sau:
\(\frac{3}{4x-20}-\frac{15}{2x^2-50}+\frac{7}{6x+30}=0\)
\(\frac{8x^2}{3-12x^2}+\frac{1+8x}{4+8x}=\frac{-2x}{3-6x}\)
\(\frac{1}{x^2-2x+1}+\frac{1}{x^2+2x=1}=\frac{2}{x^2-1}\)
\(\frac{1}{x^2+1}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}=\frac{4}{5}\)
Giải phương trình chứa ẩn ở mẫu
a) \(\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}\)
b) \(\frac{3x}{x^2+x+1}+\frac{8x}{x^2+2x+1}+\frac{x}{x^2+3x+1}=\frac{16}{5}\)
a) \(\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}\)
Đặt \(x^2-2x+3=t\left(t\ge2\right)\), khi đó phương trình trở thành:
\(\frac{1}{t-1}+\frac{2}{t}=\frac{6}{t+1}\)
\(\Leftrightarrow\frac{t\left(t+1\right)+t^2-1}{\left(t-1\right)t\left(t+1\right)}=\frac{6t\left(t-1\right)}{\left(t-1\right)t\left(t+1\right)}\)
\(\Leftrightarrow t\left(t+1\right)+t^2-1=6t\left(t-1\right)\)
\(\Leftrightarrow2t^2+t-1=6t^2-6t\)
\(\Leftrightarrow-4t^2+7t-1=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=\frac{7+\sqrt{33}}{8}\\t=\frac{7-\sqrt{33}}{8}\end{cases}}\left(ktmđk\right)\)
Vậy phương trình vô nghiệm.
Bài 4: Giải các phương trình sau
a) 4(x+5)(x+6)(x+10)(x+12)=\(3x^2\)
b) \(\frac{1}{x^2-3x+3}+\frac{2}{x^2-3x+4}=\frac{6}{x^2-3x+5}\)
c) \(\frac{4x}{4x^2-8x+7}+\frac{3x}{4x^2-10x+7}=1\)
d) \(\dfrac{2x}{2x^2-5x+3}+\dfrac{13x}{2x^2+x+3}=6\)
Giải các phương trình sau:
a)\(\frac{\left(9x-0.7\right)}{4}-\frac{\left(5x-1.5\right)}{7}=\frac{\left(7x-1.1\right)}{3}-\frac{5\left(0.4-2x\right)}{6}\)
b)\(\frac{3x-1}{x-1}-\frac{2x+5}{x+3}=1-\frac{4}{\left(x-1\right)\left(x+3\right)}\)
c)\(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=-\frac{7}{6\left(x+5\right)}\)
d)\(\frac{8x^2}{3\left(1-4x\right)^2}=\frac{2x}{6x-3}-\frac{1+8x}{4+8x}\)
GIẢI CÁC PHƯƠNG TRÌNH
a) \(x-\frac{5x+2}{6}=\frac{7-3x}{4}\)
b) \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
c) \(\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)
d) \(\frac{2+x}{3}=\frac{1}{2}x=\frac{1-2x}{4}+\frac{1}{4}\)
a, \(x-\frac{5x+2}{6}=\frac{7-3x}{4}\)
\(\frac{12x}{12}-\frac{2\left(5x+2\right)}{12}=\frac{3\left(7-3x\right)}{12}\)
\(12x-10x-4=21-9x\)
\(11x=25\)
\(x=\frac{24}{11}\)
\(b,\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
\(\frac{10x+3}{12}=\frac{15+8x}{9}\)
\(9\left(10x+3\right)=12\left(15+8x\right)\)
\(3\left(10x+3\right)=4\left(8x+15\right)\)
\(30x+9=32x+60\)
\(-2x=51\)
\(x=-\frac{51}{2}\)
\(c,\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)
\(\frac{2x}{6}-\frac{3\left(2x+1\right)}{6}=\frac{x-6x}{6}\)
\(2x-6x-3=x-6x\)
\(x=3\)
P/s: Bn xem lại đề bài phần d nha!
=.= hk tốt!!
Giải phương trình
\(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)\(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)
Giải phương trình
a. x/3 - 5x/6 - 15x/12 = x/4 - 5
b. \(\frac{8x-3}{4}\)- \(\frac{3x-2}{2}\)= \(\frac{2x-1}{1}\)+\(\frac{x+3}{4}\)
a, \(\frac{x}{3}-\frac{5x}{6}=\frac{x}{4-5}\)
\(\Leftrightarrow\frac{2x}{6}-\frac{5x}{6}=\frac{x}{-1}\Leftrightarrow\frac{-x}{2}=\frac{x}{-1}\)
\(\Leftrightarrow x=2x\Leftrightarrow x-2x=0\Leftrightarrow x\left(1-2\right)=0\Leftrightarrow x=0\)
b, \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{1}+\frac{x+3}{4}\)
\(\Leftrightarrow\frac{8x-3-6x+4}{4}=\frac{8x-4+x+3}{4}\)
Khử mẫu : \(2x+1=9x-1\Leftrightarrow-7x=-2\Leftrightarrow x=\frac{2}{7}\)
a, \(\frac{x}{3}-\frac{5x}{6}-\frac{15x}{12}=\frac{x}{4-5}\)
\(\Leftrightarrow\frac{x}{3}-\frac{5x}{6}-\frac{15x}{12}=\frac{-x}{1}\)
\(\Leftrightarrow\frac{4x}{12}-\frac{10x}{12}-\frac{15x}{12}=\frac{-12x}{12}\)
\(\Leftrightarrow\frac{4x-10x-15x}{12}=\frac{-12x}{12}\)
\(\Leftrightarrow4x-10x-15x=-12x\)
\(\Leftrightarrow-21x=-12x\)
\(\Leftrightarrow-21x+12x=0\)
\(\Leftrightarrow-9x=0\)
\(\Leftrightarrow x=0\)
Vậy S = { 0 }