Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Nga
Xem chi tiết
Thanh Tùng DZ
14 tháng 10 2017 lúc 20:34

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)

\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)( đpcm )

Vũ Nga
14 tháng 10 2017 lúc 20:42

cảm ơn bạn rất nhiều

Phu Pham Thien
Xem chi tiết
FUCK
2 tháng 9 2018 lúc 14:24

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

Việt Anh
Xem chi tiết
Mai Ngọc
8 tháng 1 2016 lúc 11:52

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\left(\frac{a+b}{c+d}\right)^3=\left(\frac{bk+b}{dk+d}\right)^3=\left(\frac{b\left(k+1\right)}{d\left(k+1\right)}\right)^3=\left(\frac{b}{d}\right)^3\left(1\right)\)

\(\frac{a^3+b^3}{c^3+d^3}=\frac{\left(bk\right)^3+b^3}{\left(dk\right)^3+d^3}=\frac{b^3k^3+b^3}{d^3k^3+d^3}=\frac{b^3\left(k^3+1\right)}{d^3\left(k^3+1\right)}=\frac{b^3}{d^3}=\left(\frac{b}{d}\right)^3\left(2\right)\)

Từ (1) & (2)=>\(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)

Quản Thu Hằng
Xem chi tiết
Nguyễn Huy Tú
1 tháng 10 2016 lúc 11:06

Cách 1: 

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=b.k,c=d.k\)

Ta có:

\(\left(\frac{a+b}{c+d}\right)^3=\left(\frac{b.k+b}{d.k+d}\right)^3=\left[\frac{b\left(k+1\right)}{d\left(k+1\right)}\right]^3=\left(\frac{b}{d}\right)^3=\frac{b^3}{d^3}\) (1)

\(\frac{a^3+b^3}{c^3+d^3}=\frac{\left(b.k\right)^3+b^3}{\left(d.k\right)^3+d^3}=\frac{b^3.k^3+b^3}{d^3.k^3+d^3}=\frac{b^3.\left(k^3+1\right)}{d^3.\left(k^3+1\right)}=\frac{b^3}{d^3}\) (2)

Từ (1) và (2) suy ra \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)

 

Nga Nguyen thi
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 2 2022 lúc 20:00

Bài 1: 
Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{a}{3a+b}=\dfrac{bk}{3bk+b}=\dfrac{k}{3k+1}\)

\(\dfrac{c}{3c+d}=\dfrac{dk}{3dk+d}=\dfrac{k}{3k+1}\)

Do đó: \(\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)

c: \(\dfrac{2a+3b}{2a-3b}=\dfrac{2\cdot bk+3b}{2\cdot bk-3b}=\dfrac{2k+3}{2k-3}\)

\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{2k+3}{2k-3}\)

Do đó: \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)

Vũ Thị Yến Ngọc
Xem chi tiết
Vũ Thị Yến Ngọc
20 tháng 8 2021 lúc 15:53

Mik ghi lộn đầu bài đoạn  cuối là c-d/c+d

 

Nguyễn Lê Phước Thịnh
20 tháng 8 2021 lúc 23:25

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)

nên \(\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

Suy ra: \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)

Hà Linh Nguyễn
Xem chi tiết
nguyễn thu hà anh
Xem chi tiết
Lê Trung Hiếu
28 tháng 10 2018 lúc 13:49

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có:\(\left(\dfrac{a+b}{c+d}\right)^3=\left(\dfrac{bk+b}{dk+d}\right)^3=\left(\dfrac{b.\left(k+1\right)}{d.\left(k+1\right)}\right)^3=\dfrac{b^3}{d^3}\)(1)

Lại có :\(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{b^3k^3+b^3}{d^3k^3+d^3}=\dfrac{b^3.\left(k^3+1\right)}{d^3.\left(k^3+1\right)}=\dfrac{b^3}{d^3}\)(2)

Từ (1) và (2) => ĐPCM

Nguyên Thành Đạt
28 tháng 10 2018 lúc 20:57

Từ a/b=c/d

=>a/c=b/d=a+b/c+d

<=>a^3/c^3=b^3/d^3=(a+b)^3(c+d)^3

=a^3+b^3/c^3+d^3

Vậy

(a+b)^3(c+d)^3=a^3+b^3/c^3+d^3 (đpcm)

Việt Anh
Xem chi tiết
Mai Ngọc
7 tháng 1 2016 lúc 20:48

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\frac{a^2-b^2}{ab}=\frac{\left(bk\right)^2-b^2}{bk.b}=\frac{b^2.k^2-b^2}{b^2k}=\frac{b^2\left(k^2-1\right)}{b^2k}=\frac{k^2-1}{k}\left(1\right)\)

\(\frac{c^2-d^2}{cd}=\frac{\left(dk\right)^2-d^2}{dk.d}=\frac{d^2k^2-d^2}{d^2k}=\frac{d^2\left(k^2-1\right)}{d^2.k}=\frac{k^2-1}{k}\left(2\right)\)

Từ (1) và (2)=>\(\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\).

 

Mai Ngọc
7 tháng 1 2016 lúc 20:49

phần b đề kiểu gì vậy??//