Cho hệ phương trình
\(\hept{\frac{mx+y=m}{x+my=1}}\)
Tìm giá trị m để hệ phương trình có nghiệm duy nhất
Cho hệ phương trình
\(\hept{\begin{cases}mx+y=m\\x+my=1\end{cases}}\)
TÌm giá trị m để hệ phương trình có nghiệm duy nhất
Cho hệ phương trình
\(\hept{\begin{cases}mx+y=m\\x+my=1\end{cases}}\)
Tìm giá trị m để hệ phương trình trên có nghiệm duy nhất
mx+y=m
<=>mx-m=-y
<=>m(x-1)=-y(1)
x+my=1
<=>x-1=-my
<=>m(x-1)=-m^2y(2)
Thay (1) vào (2) ta có:
-y=-m^2y
<=> y=m^2y
<=>m^2=1
=>m thuộc{1;-1}
Vậy m thuộc{-1;1}
Cho hệ phương trình x + my =2m hoặc mx + y = 1-m (m là tham số )
1.Tìm các giá trị của m để hệ phương trình :
a)Có nghiệm duy nhất. Tìm nghiệm duy nhất đó
b)Vô nghiệm
c)Vô số nghiệm
2.Trong trường hợp hệ phương trình có nghiệm duy nhất (x,y)
a)Hãy tìm giá trị m nguyên để x và y cùng nguyên
b)tìm hệ thức liên hệ giữa x và y không phụ thuộc m
Cho hệ phương trình
\(\hept{\begin{cases}mx+y=m\\x+my=1\end{cases}}\)
Tính giá trị m để hệ phương trình trên có nghiệm duy nhất
Cho hệ phương trình: \(\hept{\begin{cases}x+my=m+1\\mx+y=3m-1\end{cases}}\)(m là tham số).
Tìm m để hệ phương trình đã cho có nghiệm duy nhất sao cho x.y đạt giá trị nhỏ nhất.
Bài 1: Cho hệ phương trình với tham số m:
\(\hept{\begin{cases}\left(m-1\right)x+y=3m-4\\x+\left(m-1\right)y=m\end{cases}}\)
a) Giải và biện luận hề phương trình.
b) Tìm các giá trị của m để nghiệm của hệ phương trình là các số nguyên
c) tìm các giá trị của m để hệ phương trình có nghiệm dương duy nhất
Bài 2: Cho hệ phương trình với tham số m:
\(\hept{\begin{cases}x+my=m+1\\mx+y=3m-1\end{cases}}\)
a) Giải và biện luận hệ phương trình theo m
b) Trong trường hợp hệ có nghiệm duy nhất, tìm các giá trị của m để tích xy nhỏ nhất.
Cho hệ pương trình
\(\hept{\begin{cases}mx+y=m\\x+my=1\end{cases}}\)
Tính giá trị m để hệ phương trình trên có nghiệm duy nhất
Để hệ pt có nghiệm duy nhất thì : a/a' # b/b' => m/1 # 1/m
=> m^2 # 1 => m # 1 hoặc m # -1
Cho hệ phương trình:\(\hept{\begin{cases}x-my=m+3\\mx-4y=-2\end{cases}}\)
a,tìm tất cả các giá trị m nguyên để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y>0
Thế vào phương trình 2x +my = 8 ta được. 2(m-2y) +my = 8 => -4y +my = 8-2m => (m-4)y = 8-2m.
Nếu m = 4 => 0.y = 0 luôn đúng => hệ có vô số nghiệm.
Nếu m khác 4 => y = (8-2m)/ (m-4 ) => x = m -2(8-2m)/ (m-4) = (m2 -16)/ (m-4). Khi đó, hệ có nghiệm duy nhất.
Vậy hệ đã cho có nghiệm với mọim, và khi m khác 4 thì hệ ...
Ta có: \(\hept{\begin{cases}x-my=m+3\left(1\right)\\mx-4y=\left(-2\right)\left(2\right)\end{cases}}\)
Từ (1), suy ra \(my=\left(m+3\right)+x\)(3)
Thay (3) vào 2. Ta có: \(mx-4\left[\left(m+3\right)+x\right]=-2\)
\(\Leftrightarrow mx-\left(4m-12+x\right)=-2\)
\(\Leftrightarrow6mx=-11\)
\(\Leftrightarrow mx=\left(-11\right):6=-\frac{11}{6}\)(4)
Để hệ phương trình có nghiệm duy nhất (x;y) với x +y > 0 khi PT (4) có nghiệm duy nhất
\(\Leftrightarrow m\ne0\)
cho hệ phương trình x+my=m+1 mx+y=3m-1
tìm m để hệ phương trình có một nghiệm duy nhất (x,y)thõa mãn xy đại giá trị nhỏ nhất
Hệ pt : \(\begin{cases}x+my=m+1\\mx+y=3m-1\end{cases}\)
Xét pt đầu : \(x+my=m+1\Leftrightarrow x=m+1-my\) thay vào pt còn lại :
\(m\left(m+1-my\right)+y=3m-1\)
\(\Leftrightarrow y\left(1-m^2\right)=-m^2+2m-1\)
Nếu \(m=1\) thì pt có dạng 0.y = 0 => Vô số nghiệm.
Nếu m = -1 thì pt có dạng 0.x = -4 => vô nghiệm.
Xét với \(m\ne1\) và \(m\ne-1\) thì pt có nghiệm \(y=\frac{-\left(m-1\right)^2}{\left(1-m\right)\left(1+m\right)}=\frac{m-1}{m+1}\)
\(\Rightarrow x=m+1-m\left(\frac{m-1}{m+1}\right)=m+1-\frac{m^2-m}{m+1}=\frac{m^2+2m+1-m^2+m}{m+1}=\frac{3m+1}{m+1}\)
Xét \(xy=\frac{\left(m-1\right)\left(3m+1\right)}{\left(m+1\right)^2}=\frac{3m^2-2m-1}{\left(m+1\right)^2}\)
Đặt \(t=m+1\) thì \(m=t-1\) thay vào biểu thức trên được
\(\frac{3\left(t-1\right)^2-2\left(t-1\right)-1}{t^2}=\frac{3t^2-8t+4}{t^2}=\frac{4}{t^2}-\frac{8}{t}+3\)
Lại đặt \(a=\frac{1}{t}\) thì : \(4a^2-8a+3=4\left(a-1\right)^2-1\ge-1\)
Suy ra \(xy\ge-1\) . Dấu đẳng thức xảy ra khi \(a=1\Leftrightarrow t=1\Leftrightarrow m=0\)
Vậy với m = 0 thì xy đạt giá trị nhỏ nhất bằng -1