Cho 2 tam giác ABC và A'B'C' như hình vẽ. Chứng minh tam giác A'B'C'~tam giác ABC
cau hỏi vở bài tập Toán hình Luyện tập trang 74 bài 3
cho tam giác ABC
a, dựng phía ngoài tam giác ABC một tam giác A'B'C' ddoongof dạng với tam giác ABC theo tỉ số lầ 2/3
b, chứng minh chu vi tam giác A'B'C' và chu vi tam giác ABC là 2/3
ccho hiệu chu vi của tam giác ABC với tam giác A'B'C' là 65,5 hỏi chu vi của cả hai
cho tam giác ABC và tam giác A'B'C' có AB=A'B' góc A - góc A' và ac=A'C' a)so sánh tam giác ABC= tam giác A'B'C' B) chứng minh BM=B'M' C)trên AB và A'B' lấy AM=A'M' chứng minh tam giác AMC = tam giác A'M'C'
Giải
a ) Xét tam giác ABC và tam giác A'B'C' có :
\(\widehat{A}=\widehat{A'}\left(GT\right)\)
AB = A'B' ( GT )
AC = A'C' ( GT)
=> Tam giác ABC = Tam giác A'B'C' ( c.g.c)
b ) Xét tam giác AMC và tam giác A'M'C' có :
\(\widehat{A}=\widehat{A'}\)
AC = A'C' ( GT )
AM = A'M' ( GT )
=> tam giác AMC = tam giác A'M'C ( c.g.c )
c ) Vì BM + AM = AB ( vì M nằm giữa A và B )
B'M + A'M' = A'B' ( vì M' nằm giữa A' và B ' )
Mà A'M' = AM , AB = A'B nên BM = B'M'
cho tam giác ABC và tam giác A'B'C' có AB=A'B' góc A - góc A' và ac=A'C' a)so sánh tam giác ABC= tam giác A'B'C' B) chứng minh BM=B'M' C)trên AB và A'B' lấy AM=A'M' chứng minh tam giác AMC = tam giác A'M'C'
Cho tam giác ABC và tam giác A'B'C' có AB=A'B', AC = A'C' ; góc A= A'( vẽ hình hộ mk thôi)
a, so sánh tam giác ABC và A'B'C'
b, trên các cạnh AB và A'B' lấy AM =A'M'
Chứng minh tam giác AMC =A'M'C'
c, Chứng minh BM=B'M'
d. Trên các cạnh BC và B'C' lấy BE = B'E'
Chứng minh tam giác MBE = M'B'E'
Cho tam giác ABC và tam giác A'B'C' có AB=A'B', AC=A'C'. M thuộc BC sao cho MC=MB, M' thuộc B'C' sao cho M'C' =M'B' và AM=A'M'.Chứng minh tam giác ABC= tam giác A'B'C'
cho tam giác ABC và tam giác A'B'C' có Ab = A'B', AC = A"C'. M thuộc BC sao cho MC = MB, M' thuộc B'C' sao cho M'B' = M'C' và AM = A'M'. Chứng minh tam giác ABC = tam giác A'B'C'
Chứng minh rằng : Nếu một phép dời hình biến tam giác ABC thành tam giác A'B'C' thì nó cũng biến trọng tâm của tam giác ABC tương ứng thành trọng tâm của tam giác A'B'C' ?
Gọi phép dời hình đó là f. Do f biến các đoạn thẳng AB, AC tương ứng thành các đoạn thẳng A'B', A'C' nên nó cũng biến các trung điểm M, N của các đoạn thẳng AB, AC tương ứng theo thứ tự thành các trung điểm M', N' của các đoạn thẳng A'B', A'C'. Vậy f biến các trung tuyến CM, BN của tam giác ABC tương ứng thành các trung tuyến C'M', B'N' của tam giác A'B'C'. Từ đó suy ra f biến trọng tâm G của tam giác ABC của CM và BN thành trọng tâm G' của tam giác A'B'C' là giao của C'M' và B'N'.
Gọi phép dời hình đó là f. Do f biến các đoạn thẳng AB, AC tương ứng thành các đoạn thẳng A'B', A'C' nên nó cũng biến các trung điểm M, N của các đoạn thẳng AB, AC tương ứng theo thứ tự thành các trung điểm M', N' của các đoạn thẳng A'B', A'C'. Vậy f biến các trung tuyến CM, BN của tam giác ABC tương ứng thành các trung tuyến C'M', B'N' của tam giác A'B'C'. Từ đó suy ra f biến trọng tâm G của tam giác ABC của CM và BN thành trọng tâm G' của tam giác A'B'C' là giao của C'M' và B'N'.
Gọi phép dời hình đó là f.
Do f biến các đoạn thẳng AB, AC tương ứng thành các đoạn thẳng A'B', A'C' nên nó cũng biến các trung điểm M, N của các đoạn thẳng AB, AC tương ứng theo thứ tự thành các trung điểm M', N' của các đoạn thẳng A'B', A'C'.
Vậy f biến các trung tuyến CM, BN của tam giác ABC tương ứng thành các trung tuyến C'M', B'N' của tam giác A'B'C'.
Từ đó suy ra f biến trọng tâm G của tam giác ABC của CM và BN thành trọng tâm G' của tam giác A'B'C' là giao của C'M' và B'N'
1 Cho tam giác ABC và tam giác A'B'C' có góc A = góc A' BC = B'C' góc B = B' chứng minh rằng tam giác ABC = tam giác A'B'C'
2 Cho tam giác ABC có AB = AC phân giác AD chứng minh rằng AD vuông góc với BC
AI TRA LỜI NHANH GIÚP MÌNH VỚI TvT
2. \(\Delta ABC\)có AB=AC \(\Rightarrow\Delta ABC\)cân.
AD là phân giác \(\Delta ABC\)mà \(\Delta ABC\)cân.
\(\Rightarrow AD\)l là đường trung trực \(\Delta ABC\)..
\(\Rightarrow AD\)là đường cao \(\Delta ABC\)..
\(\Leftrightarrow AD\perp BC\).
Hình 1 :
Xét \(\Delta ABC\) và \(\Delta A'B'C'\) có : Góc A = Góc A' ( gt ); \(BC=B'C'\left(gt\right)\); Góc B = Góc B' ( gt )
\(\Rightarrow\Delta ABC=\Delta A'B'C\left(ch-gn\right)\)
Hình 2 :
Vì \(\Delta ABC\) có \(AB=AC\Leftrightarrow\Delta ABC\) cân tại A . Vì AD là phân giác góc A
\(\Leftrightarrow\) ^BAD = ^CAD. Xét \(\Delta ABD\) và \(\Delta ACD\) có : \(AB=AC\left(gt\right)\); ^BAD = ^CAD; AD chung.
\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\Leftrightarrow\) ^ADB = ^ADC ( tương ứng ) . Mà ^ADB + ^ADC = 1800 ( kề bù )
\(\Leftrightarrow\) ^ADB = ^ADC = 1800 : 2 = 900 nên suy ra \(AD\perp BC\)
Cho tam giác ABC và tam giác A'B'C' có AB =A'B' , AC =A'C'.M thuộc BC sao cho MC = MB , M' thuộc B'C' sao cho M'C' = M'B' và AM = A'M' . Chứng minh : tam giác ABC = A'B'C'
Xét tam giác ABC và tam giác A'B'C' có:
AC=A'C(gt)
AB=A'B'(gt)
AM:cạnh chung <1>
A'M':cạnh chung <2>
Từ <1>và<2> có;AM=A'M'(vì đều là cạnh chung)
Vậy tam giác ABC =tam giác A'B'C'(c-c-c)
Cho tam giác ABC và tam giác A'B'C' có AB =A'B' , AC =A'C'.M thuộc BC sao cho MC = MB , M' thuộc B'C' sao cho M'C' = M'B' và AM = A'M' . Chứng minh : tam giác ABC = A'B'C'