Cho các sô nguyên a,b,c,d khác 0 thỏa mãn ab=cd.Cmr a^2018+b^2018+c^2018+d^2018 là hợp số
cho a,b,c là các số nguyên dương thỏa mãn a^3+b^3+c^3=3abc
tính giá trị biểu thức A=(a^2018)/(b^2018)+(b^2018)/(c^2018)+(c^2018)/(a^2018)
Cái này biến đổi dài vl ra í e :>>
Ta có a^3 + b^3 + c^3 -3abc=0
=> (a+b)^3 +c^3 -3a^2b-3ab^2 -3abc=0
=> (a+b+c).[(a+b)^2 - (a+b).c +c^2] - 3ab.(a+b+c)=0
=> (a+b+c).(a^2+2ab+b^2 - ac - bc +c^2 - 3ab)=0
=> (a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0
=> a+b+c=0 hoặc a^2+b^2+c^2-ab-bc-ca=0
Mà a,b,c dương nên a+b+c>0 => a^2+b^2+c^2-ab-bc-ca=0
=> 2a^2 + 2b^2 + 2c^2 - 2ab -2bc -2ca=0
=> (a-b)^2 + (b-c)^2 + (c-a)^2=0
Đến đây easy r e nhé, có j ko hiểu hỏi lại vì nhiều chỗ hơi tắt
thank . Mấy chỗ đó hiểu dc
\(a^3+b^3+c^3=3abc\)
\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
Mà a,b,c là các số nguyên dương
\(\Rightarrow a+b+c\ne0\)
\(\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
Vì \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(a-c\right)^2\ge0\)
Dấu "=" xảy ra khi
\(\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\a=c\end{cases}\Rightarrow}a=b=c}\)
\(\Rightarrow A=\frac{a^{2018}}{b^{2018}}+\frac{b^{2018}}{c^{2018}}+\frac{c^{2018}}{a^{2018}}=1+1+1=3\)
Cho hàm số f ( x ) = a x 3 + b x 2 + c x + d , ( a , b , c , d ∈ ℝ ) thỏa mãn a > 0 , d > 0 > 2018 , a + b + c + d - 2018 < 0 Tìm số điểm cực trị của hàm số y = f ( x ) - 2018
A. 2
B. 1
C. 3
D. 5
cho các số thực a bc thỏa mãn(a+b+c)(ab+bc+ca)=2018 và abc=2018. tính P=(b^2c+2018)(c^2a+2018)(a^2b +2018)
Cho ba số thực a,b,c khác 0 thỏa mãn a+b+c=1 và 1/a+1/b+1/c =1. Tính giá trị của biểu thức a^2018+b^2018+c^2018
Cho a,b,c là số thực thỏa mãn: (a+b+c)(ab+bc+ca)=2018 và abc=2018
Tính P= (b2c+2018)(c2a+2018)(a2b+2018)
Cho a,b,c,d khác 0, thỏa mãn :
\(\frac{x^{2018}+y^{2018}+z^{2018}+t^{2018}}{a^2+b^2+c^2+d^2}\) =\(\frac{x^{2018}}{a^2}\)+\(\frac{y^{2018}}{b^2}\)
Tính A=x2019+y2019+z2019+t2019
Cho các số nguyên a,b,c,d thỏa mãn : a + b = c + d và \(a^2+b^2=c^2+d^2\)
Chứng minh rằng \(a^{2018}+b^{2019}=c^{2019}+d^{2018}\)
bn này đội tuyển toán đấy, năm lp 6 đc giải nhất huyện cơ mà
Cho 3 số thực a,b,c khác 0 thỏa mãn a+b+c=1 và 1/a+1/b+1/c=1.Tính giá trị biểu thức P=a2018+b2018+c2018
Cho a, b, c thỏa mãn (a + b + c)(ab + bc + ac) = 2018 và abc = 2018. Tính giá trị của biểu thức P = (b^2.c + 2018)(a^2.b + 2018)(c^2.a + 2018)