Cho \(A=\frac{\sqrt{x+1}}{\sqrt{x-3}}\)
Tìm x\(\in\)Z để A\(\in\)Z
Cho biểu thức : \(A=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)
a, Rút gọn A
b, Tìm x để A < 1
c, Tìm \(x\in Z\) để \(A\in Z\)
\(ĐKXĐ:\)
\(\hept{\begin{cases}x-9\ne0\\\sqrt{x}-2\ne0\\\sqrt{x}+3\ne0;x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne9\\x\ne4\\x\ge0\end{cases}}\)
Vậy...................................................
\(A=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}-\sqrt{x}-3}{\left(\sqrt{x}+3\right)}:\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{-3}{\sqrt{x}+3}:\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{x-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{-3}{\sqrt{x}+3}:\frac{9-x+x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-3}{\sqrt{x}+3}:\frac{-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-3}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4-x}\)
\(=\frac{3\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
\(=\frac{3}{\left(2+\sqrt{x}\right)}\)
Đế A<1 \(\Rightarrow\frac{3}{2+\sqrt{x}}< 1\)
\(\Leftrightarrow\frac{3}{2+\sqrt{x}}-1< 0\)
\(\Leftrightarrow\frac{3-2-\sqrt{x}}{2+\sqrt{x}}< 0\)
\(\Leftrightarrow\frac{1-\sqrt{x}}{2+\sqrt{x}}< 0\)
Vì \(2+\sqrt{x}>0\forall x\in R\)
\(\Rightarrow1-\sqrt{x}< 0\)
\(\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)
Kết hợp ĐKXĐ \(\Rightarrow\hept{\begin{cases}x>1\\x\ne4\\x\ne9\end{cases}}\)
1/ Cho biểu thức \(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{3\sqrt{x}-3}{x-5\sqrt{x}+6}\)
a)Tìm các giá trị của x để A<-1
b) Tìm các giá trị của \(x\in Z\) sao cho \(2A\in Z\)
2/ Cho \(A=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)tìm các giá trị của x để A>-6
Cho A= \(\frac{x-2}{x+2\sqrt{x}}-\frac{1}{\sqrt{x}}+\frac{2}{\sqrt{x}+2}\)
a) RG
b) tính A khi x= 4 +2\(\sqrt{3}\)
c)tìm x\(\in Z\)để A\(\in Z\)
a/ \(\frac{x-2}{x+2\sqrt{x}}-\frac{1}{\sqrt{x}}+\frac{2}{\sqrt{x}+2}\)
\(=\frac{x-2}{x+2\sqrt{x}}-\frac{\sqrt{x}+2}{x+2\sqrt{x}}+\frac{2\sqrt{x}}{x+2\sqrt{x}}\)
\(=\frac{x+\sqrt{x}-4}{x+2\sqrt{x}}\)
b/ \(\frac{x+\sqrt{x}-4}{x+2\sqrt{x}}=\frac{4+2\sqrt{3}+\sqrt{\left(\sqrt{3}+1\right)^2}-4}{4+2\sqrt{3}+2\sqrt{\left(\sqrt{3}+1\right)^2}}\)
\(=\frac{4+2\sqrt{3}+\sqrt{3}+1-4}{4+2\sqrt{3}+2\sqrt{3}+2}=\frac{1+3\sqrt{3}}{6+4\sqrt{3}}\)
1. Cho A = \(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a) Rút gọn A
b) Tìm A khi x = \(\frac{1}{9}\)
c) Tìm x\(\in\)Z để A\(\in\)Z
ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)
a) \(A=\frac{2\sqrt{x}-9}{x-2\sqrt{x}-3\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(A=\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b) Thay \(x=\frac{1}{9}\)vào A, ta có:
\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=\frac{\frac{1}{3}+1}{\frac{1}{3}-3}=\frac{\frac{4}{3}}{\frac{-8}{3}}=-\frac{1}{2}\)
c) \(A\in Z\Rightarrow\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\in Z\Rightarrow\frac{4}{\sqrt{x}-3}\in Z\Leftrightarrow\sqrt{x}-3\)là ước số của 4 gồm:\(1;2;4;-1;-2;-4\)
\(\sqrt{x}-3=1\Leftrightarrow x=16\)(chọn)
\(\sqrt{x}-3=2\Leftrightarrow x=25\)(chọn)
\(\sqrt{x}-3=4\Leftrightarrow x=49\)(chọn)
\(\sqrt{x}-3=-1\Leftrightarrow x=4\)(loại)
\(\sqrt{x}-3=-2\Leftrightarrow x=1\)(chọn)
\(\sqrt{x}-3=-4\Leftrightarrow\sqrt{x}=-1\)(vô lý)
Vậy với \(x=1;16;25;49\)thì \(A\in Z\)
Cho C = \(\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}.\)
a) rút gọn C
b) tìm x\(\in\)Z để C \(\in\)Z
c) tìm x để C > \(\frac{1}{2}\)
Bài 1 : Cho bt M = \(\left(\frac{\sqrt{x}}{x-4}\right)+\left(\frac{1}{\sqrt{x}-2}\right).\frac{\sqrt{x}-2}{2}\)
a) tim dkxd va RG A .
b) tim \(x\in Z\)de \(2M\in Z\)
Bài 2 : cho bt A = \(\left(\frac{\sqrt{x}+1}{x-2\sqrt{x}}-\frac{1}{\sqrt{x}-2}\right).\left(x-3\sqrt{x}+2\right)\)
a) tìm ĐKXĐ và RG A
b) tìm x để \(A< \frac{1}{2}\)
c) tim \(x\in Z\)de \(A\in Z\)
Câu 1) a) ĐKXĐ \(x\ge0,\)\(x\ne4\)A=\(\frac{x+2\sqrt{x}-4}{2\left(x-4\right)}\)b) Mình chưa làm được Câu 2) a) ĐKXĐ \(x>0,\)\(x\ne4\)A=\(\frac{\sqrt{x}-1}{\sqrt{x}}\)b) Để a<\(\frac{1}{2}\)\(\Rightarrow\)\(\frac{\sqrt{x}-1}{\sqrt{x}}< \frac{1}{2}\)\(\Rightarrow x< 1\)\(\Rightarrow0< x< 1\)thỏa mãn bài toán c) Ta có A=\(\frac{\sqrt{x}-1}{\sqrt{x}}=1-\frac{1}{\sqrt{x}}\), để A \(\in Z\)\(\Rightarrow\sqrt{x}\inƯ\left(1\right)\), \(\Rightarrow x=1\)( thỏa mãn ĐK)
CHO A=\(\frac{\sqrt{X}+2}{\sqrt{X}+3}\)-\(\frac{5}{X-\sqrt{X}-6}\)+\(\frac{1}{2-\sqrt{X}}\)
a, RÚT GỌN A
b,TÌM X ĐỂ\(\sqrt{A}\)<A
c, TÌM X\(\in\)Z ,A\(\in\)Z
Cho biểu thức \(P=\frac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{\sqrt{x}}\left(\frac{1}{1-\sqrt{x}}-1\right)ĐKXĐ:x>0;x\ne1\)
a, Rút gọn P
b, Tìm x \(\in Z\) để \(P\in Z\)
c, Tìm x biết \(P=\sqrt{x}\)
Cho biểu thức : \(A=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)
a, Rút gọn A
b, Tìm x để A < 1
c, Tìm \(x\in Z\) để \(A\in Z\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\\x\ne9\end{matrix}\right.\)
\(A=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\\ =\left(\frac{\sqrt{x}-\sqrt{x}-3}{\sqrt{x}+3}\right):\left(\frac{9-x+x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\\ =\frac{-3}{\sqrt{x}+3}:\frac{4-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\frac{-3}{\sqrt{x}+3}\cdot\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\frac{3}{\sqrt{x}+2}\)
b) Ta có:
\(P=\frac{3}{\sqrt{x}+2}< 1\\ \Leftrightarrow\frac{3}{\sqrt{x}+2}-1< 0\\ \Leftrightarrow\frac{3-\left(\sqrt{x}+2\right)}{\sqrt{x}+2}< 0\\ \Leftrightarrow\frac{1-\sqrt{x}}{\sqrt{x}+2}< 0\\ \Leftrightarrow1-\sqrt{x}< 0\\ \Leftrightarrow\sqrt{x}>1\\ \Leftrightarrow x>1\)
Vậy với \(x>1;x\ne4;x\ne9\)thì P < 1
c) Để \(A\in Z\Leftrightarrow3⋮\sqrt{x}+2\Leftrightarrow\sqrt{x}+2\inƯ\left(3\right)\)
Ta có bảng sau
\(\sqrt{x}+2\) | 1 | -1 | 3 | -3 |
\(\sqrt{x}\) | -1 | -3 | 1 | -5 |
\(x\) | loại | loại | 1(tm) | loại |
Vậy...................
Bài 4:
Cho biểu thức: \(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a) Tìm đkxđ của M và rút gọn
b) Tìm x \(\in Z\) để M \(\in Z\)
\(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\left(\text{đ}k\text{x}\text{đ}:x\ge3\right)\\ =\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\\ =\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{2\sqrt{x}-9-\left(x-9\right)-\left(2x-4\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9-2x+4\sqrt{x}-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ =\dfrac{5\sqrt{x}-3x+2}{x-5\sqrt{x}+6}\)
__
Để \(M\in Z\) thì \(x-5\sqrt{x}+6\) thuộc ước của \(5\sqrt{x}-3x+2\)
\(\Rightarrow x-5\sqrt{x}+6=-5\sqrt{x}-3x+2\\ \Leftrightarrow x-5\sqrt{x}+6+5\sqrt{x}+3x-2=0\\ \Leftrightarrow4x-4=0\\ \Leftrightarrow4x=4\\ \Leftrightarrow x=1\)