Tìm x là số nguyễn để B có giá trị nguyên
B = \(\frac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
Tìm các giá trị nguyên của x để phân thức sau có giá trị là số nguyên:
\(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
ĐKXĐ: \(x\ne1\)
Ta có: \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
\(=\dfrac{x^4-2x^3+x^2-4x^2+8x-4+3}{x^2-2x+1}\)
\(=\dfrac{x^2\left(x^2-2x+1\right)-4\left(x^2-2x+1\right)+3}{x^2-2x+1}\)
\(=\dfrac{\left(x-1\right)^2\cdot\left(x^2-4\right)+3}{\left(x-1\right)^2}\)
\(=x^2-4+\dfrac{3}{\left(x-1\right)^2}\)
Để B nguyên thì \(3⋮\left(x-1\right)^2\)
\(\Leftrightarrow\left(x-1\right)^2\inƯ\left(3\right)\)
\(\Leftrightarrow\left(x-1\right)^2\in\left\{1;3;-1;-3\right\}\)
mà \(\left(x-1\right)^2>0\forall x\) thỏa mãn ĐKXĐ
nên \(\left(x-1\right)^2\in\left\{1;3\right\}\)
\(\Leftrightarrow x-1\in\left\{1;9\right\}\)
hay \(x\in\left\{2;10\right\}\) (nhận)
Vậy: \(x\in\left\{2;10\right\}\)
Tìm các giá trị nguyên của x để phân thức sau có giá trị là số nguyên:
\(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
Tìm các giá trị nguyên của x để phân thức sau có giá trị là số nguyên:
a) \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
Tìm số nguyên của x để mỗi phân thức sau có giá trị là số nguyên:
a) (x^4 - 2x^3 - 3x^2 + 8x - 1) / (x^2 - 2x +1)
b) (x^4 + 3x^3 +2x^2 + 6x -2) / (x^2 + 2)
MK ko biế đúng ko nữa , sai thì ý kiến
a)
b)
Chúc các bn hok tốt
Tham khảo nhé
Tìm giá trị nguyên của biến số x để BT đã cho cũng có giá trị nguyên
a) \(\dfrac{2x^3+x^2+2x+2}{2x+1}\)
b)\(\dfrac{3x^3-7x^2+11x-1}{3x-1}\)
c)\(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}\)
a:
ĐKXĐ: x<>-1/2
Để \(\dfrac{2x^3+x^2+2x+2}{2x+1}\in Z\) thì
\(2x^3+x^2+2x+1+1⋮2x+1\)
=>\(2x+1\inƯ\left(1\right)\)
=>2x+1 thuộc {1;-1}
=>x thuộc {0;-1}
b:
ĐKXĐ: x<>1/3
\(\dfrac{3x^3-7x^2+11x-1}{3x-1}\in Z\)
=>3x^3-x^2-6x^2+2x+9x-3+2 chia hết cho 3x-1
=>2 chia hết cho 3x-1
=>3x-1 thuộc {1;-1;2;-2}
=>x thuộc {2/3;0;1;-1/3}
mà x nguyên
nên x thuộc {0;1}
c:
ĐKXĐ: x<>2
\(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}\in Z\)
=>\(\left(x^2-4\right)\left(x^2+4\right)⋮\left(x-2\right)^2\left(x^2+4\right)\)
=>\(x+2⋮x-2\)
=>x-2+4 chia hết cho x-2
=>4 chia hết cho x-2
=>x-2 thuộc {1;-1;2;-2;4;-4}
=>x thuộc {3;1;4;0;6;-2}
Tìm giá trị của x để phân thức có giá trị nguyên:
\(\frac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
ĐK : \(x\ne1\)
Sử dụng chia 2 đa thức ta được
\(\frac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}=x^2-2x+1+\frac{3}{x^2-4}\)
Để phân thức có giá trị nguyên
\(\Leftrightarrow\frac{3}{x^2-4}\inℤ\)
\(\Leftrightarrow x^2-4\inƯ\left(3\right)\)
Ta có bảng sau :
x2 - 4 | 1 | -1 | 3 | -3 |
x | \(\sqrt{5}\left(L\right)\) | \(\sqrt{3}\left(L\right)\) | \(\sqrt{7}\left(L\right)\) | 1 hoặc -1 |
Vậy ...............
Tìm các giá trị nguyên của x để giá trị của các phân thức sau có giá trị nguyên:
A=2x^3+x^2+2x+4/2x+1
B=3x^2-8x+1/x-3
C=x^3+2x+5x+10/x^2+4x+4
Tìm các giá trị nguyên của biển số x để biểu thức đã cho cũng có giá trị nguyên a)x^3-2x^2+4/x-2 b)3x^3-7x^2+11x-1/3x-1 c)x^4-16/x^4-4x^3+8x^2-16x+16 Cần gấp!!
a: Để A là số nguyên thì
x^3-2x^2+4 chia hết cho x-2
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
b: Để B là số nguyên thì
\(3x^3-x^2-6x^2+2x+9x-3+2⋮3x-1\)
=>\(3x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{\dfrac{2}{3};0;1;-\dfrac{1}{3}\right\}\)
1) Tìm các giá trị nguyên của x để phân thức sau có giá trị là số nguyên:
a) A=(2x3-6x2+x-8)/(x-3)
b) B=(x4-2x3-3x2+8x-1)/(x2-2x+1)
c) C=(x4+3x3+-2x2+6x-2)/(x2+2)