Lớp 6A cos43 học sinh, lớp 6B có 30 học sinh, lớp 6C có 48 học sinh. Trong buổi sinh hoạt dưới cờ, ba lớp cùng xếp thành một số hàng dọc như nhau mà không lớp nào có người lẻ hàng. Tính số hàng dọc nhiều nhất.
Lớp 6A có 43 học sinh lớp 6B có 30 học sinh lớp 6C có 48 học sinh Trong buổi sinh hoạt dưới cờ ba lớp cùng xếp thành một số hành giảm như nhau mà không lớp nào có người lẻ hàng tính số hàng dọc nhiều nhất
Gọi n là số hàng dọc được xếp nhiều nhất (n thuộc N*)
Theo đề ra ta thấy: 43 chia hết cho n; 30 chia hết cho n; 48 chia hết cho n => n thuộc ƯCLN (43;30;49)
Ta có: 43 = 43; 30=2.3.5; 48=24.3 => ƯCLN (43;30;48) = 1
Số hàng dọc nhiều nhất là 1.
Đề có chút sai sai thì phải bạn ạ!! Tại đáp án không hợp lí đáng lẽ ra số học sinh của mỗi lớp không được NTCN.
Lớp 6A có 36 học sinh, lớp 6B có 32 học sinh, lớp 6C có 48 học sinh. Mỗi sáng thứ hai chào cờ , 3 lớp lại xếp thành một số hàng dọc mà mỗi hàng có số học sinh như nhau và không lớp nào bị lẻ hàng. Tính số hàng dọc nhiều nhất mà ba lớp có thể xếp được.
Gọi số hàng dọc nhiều nhất có thể chia là x
⇒ x = ƯCLN(36; 32; 48)
Ta có:
\(36=2^2\cdot3^2\)
\(32=2^5\)
\(48=2^4\cdot3\)
\(\Rightarrow x=ƯCLN\left(36;32;48\right)=2^2=4\) (hàng)
Vậy: ...
Lớp 6A có 54 học sinh, lớp 6B có 42 học sinh, lớp 6C có 48 học sinh. Trong ngày khai giảng, ba lớp cùng xếp thành một số hàng dọc như nhau để diễu hành mà không có lớp nào có người lẻ hàng. Tính số hàng dọc nhiều nhất có thể xếp được
Gọi số hàng dọc là a (a ∈ N*)
Khi đó ta có: 54 ⋮ a, 42 ⋮ a, 48 ⋮ a và a lớn nhất.
Do đó a là ƯCLN(54,42,48).
Tính được : a = 6.
Vậy, xếp được nhiều nhất là 6 hàng dọc
Gọi số hàng dọc là a (a ∈ N*)
Khi đó ta có: 54 ⋮ a, 42 ⋮ a, 48 ⋮ a và a lớn nhất.
Do đó a là ƯCLN(54,42,48).
Tính được : a = 6.
Vậy, xếp được nhiều nhất là 6 hàng dọc
Lớp 6A có 54 học sinh, lớp 6B có 42 học sinh, lớp 6C có 48 học sinh. Trong ngày khai giảng, ba lớp cùng xếp thành một số hàng dọc như nhau để diễu hành mà không có lớp nào có người lẻ hàng. Tính số hàng dọc nhiều nhất có thể xếp được.
Lớp 6A có 45 học sinh, lớp 6B có 42 học sinh, lớp 6C có 48 học sinh. Trong ngày khai giảng, ba lớp cùng xếp thành một số hàng dọc như nhau để diễu hành mà không lớp nào có người lẻ hàng. Tính số hàng dọc nhiều nhất có thể xếp được
Gọi a (hàng) là số hàng dọc nhiều nhất có thể xếp được. Ta có a = ƯCN(45,42,48)
Suy ra a = 3
Vậy số hàng dọc nhiều nhất có thể xếp được là 3 hàng.
Lớp 6A có 45 học sinh, lớp 6B có 42 học sinh, lớp 6C có 48 học sinh. Trong ngày khai giảng, ba lớp cùng xếp thành một số hàng dọc như nhau để diễu hành mà không lớp nào có người lẻ hàng. Tính số hàng dọc nhiều nhất có thể xếp được
Lớp 6A có 54 học sinh, lớp 6B có 42 học sinh, lớp 6C có 48 học sinh. Trong ngày khai giảng, ba lớp cùng xếp thành một số hàng dọc như nhau để diễu hành mà không lớp nào có người lẻ hàng. Tính số hàng dọc nhiều nhất để có thể xếp được.
Vì số học sinh xếp đủ nên số hàng dọc là ước chung của số học sinh 3 lớp
Số hàng dọc nhiều nhất cũng là ước chung lớn nhất của số học sinh ba lớp
Ta có: 54 = 2.33 42 = 2.3.7 48 = 24.3
ƯCLN(54; 42; 48) = 2.3 = 6
Vậy số hàng dọc nhiều nhất xếp được là 6 hàng
Lớp 6A có 54 học sinh, lớp 6B có 42 học sinh, lớp 6C có 48 học sinh. Trong ngày khai giảng, ba lớp cùng xếp thành một số hàng dọc như nhau để diễu hành mà không lớp nào có người lẻ hàng. Tính số hàng dọc nhiều nhất có thể xếp được ?
Vì cả 3 lớp xếp cùng số hàng như nhau nên số học sinh của mỗi lớp phải chia hết cho số hàng
gọi a là số hàng 3 lớp có thể xếp được
ta có: a thuộc ƯC(54, 42, 48)
vì số hàng dọc cần tìm là nhiều nhất nên a thuộc ƯCLN(54, 48, 42) = 2.3 = 6
vậy số hàng dọc nhiều nhất có thể xếp là 6 hàng
Gọi số hàng dọc là a. Ta phải có : 54 : a, 42 : a, 48 : a và a lớn nhất.
Do dó a là UCLN ( 54 , 42, 48 )
Ta tính được a = 6. Xếp được nhiều nhất thành 6 hàng dọc.
Gọi số hàng dọc là x(x\(\in N\circledast\))
Theo đề ra ,ta có:
\(54⋮x\) ;\(42⋮x\) ;\(48⋮x\) ; và x là lớn nhất
\(\Rightarrow x\in\) ƯCLN(54 ;42 ;48)
54=\(2.3^3\)
\(42=2.3.7\)
\(48=2^4.3\)
ƯCLN(54;42;48)=2.3=6
Vậy xếp được nhiều nhất thành 6 hàng
187) Lớp 6A có 54 học sinh . Lớp 6B có 42 học sinh . Lớp 6C có 48 học sinh. Trong ngày khai giảng , ba lớp cùng xếp thành một số hàng dọc như nhau để diễu hành mà không lớp nào có người lẻ hàng . Tính số hàng dọc nhiều nhất có thể xếp được ?
54 = 2 . 3 . 9
42 = 2 . 3 . 7
48 = 24 . 3
ƯCLN ( 54 ; 42 ; 48 ) = 2 . 3 = 6
Suy ra số hàng nhiều nhất xếp được là 8
giải :
gọi số hàng dọc có thể xếp được nhiều nhất là a (đk a\(\in\)N*, đv hàng )
vì lớp 6A có 54 học sinh , lớp 6B có 42 học sinh , lớp 6C có 48 học sinh nên : 54\(⋮\)a, 42\(⋮\)a, 48\(⋮\)a . do a lá số hàng dọc có thể xếp được nhiều nhất nên a là : BCNN(54,42,48)
54=2.\(3^3\)
42=2.3.7
48=\(2^4\). 3
BCNN(54,42,48) = 2.3 =6 nên a=6 t/mãn đk đề bài
vậy xếp được nhiều nhất là 6 hàng dọc