Cho ABC
vuông tại A, có AB = 6cm, AC = 8cm, C = 37 0 .
Tính BC, B
1. Cho ABC vuông tại A, biết AB = 6cm, góc B = 60∘ . Tính AC, BC.
2. Cho ABC vuông tại A, biết AB = 8cm, góc C = 30∘ . Tính BC, AC.
3. Cho DBC vuông tại D, biết BC = 10cm, góc C = 45∘. Tính BD, DC.
4. Cho ABC vuông tại A có:
a) C= 60 , BC =16. Tính AB, AC.
b)B =45 , BC =5√ 2 . Tính AB, AC.
Cho ABC
vuông tại A, có AB = 6cm, AC = 8cm, C = 37độ.
Tính BC, B
a) Tính BC
Xét tam giác ABC vg tại A
=> BC2 =AB2 + AC2
BC2 = 62 + 82
BC2 = 36 + 64
BC2 = 100
BC = 10 (cm)
b) Tính góc B
Xét tam giác ABC vg tại A
=> góc B + góc C = 90°( tính chất tam giác vg)
góc B + 37° = 90°
góc B = 90°- 37°
góc B = 53°
cho tam giác abc vuông tại A có AB = 6cm AC = 8cm a) tính BC b) tia phân giác của góc ABC cắt AC tại K kẻ KH vuông BC tại H
a: BC=10cm
b: Xét ΔABK vuông tại A và ΔHBK vuông tại H có
BK chung
\(\widehat{ABK}=\widehat{HBK}\)
Do đó: ΔABK=ΔHBK
cho ABC có AB=6cm AC = 8cm vuông tại A a ) tính BC b) vẽ tia phân giác BD của góc B ( D thuộc AC ), từ D vẽ DE vuông góc với BC (E thuộc BC ) chứng minh tam giác ABC = tam giác EBD . c ) ED cắt AB tại F chúng minh tam giác ABC =tam giác EBF
a: BC=10cm
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó; ΔABD=ΔEBD
Cho △ABC vuông tại A, AB = 8cm, AC = 6cm. Cho đường cao H (H thuộc BC a. △ABC ∽ △HBA b. Tính BC, AH c. Cho đường phân giác AD (AD thuộc BC). Tính DC, BC
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)
a) Xét ∆ABC và ∆HBA, ta có:
<A=<H=90°
<B chung
⟹∆ABC∼∆HBA(g.g)
b) Áp dụng định lý py-ta-go vào ∆ABC(<A=90°(gt)) , ta có:
BC2 =AB2+AC2
=82+62=64+36=100
⟹BC=√100=10cm
Ta có: AC/HA=BC/AB ( Vì ∆ABC∼∆HBA(CM ở a))
⟹6/HA=10/8⟹HA=6*8/10=4,8cm
Cho tam giác ABC vuông tại A có AB = 6cm AC = 8cm a/ tính BC b/ kẽ đường phân giác góc A cắt BC tại D tính CD biết BD = 4cm
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
Cho tam giác ABC vuông tại A có AB=6cm ,AC=8cm a) tính độ dài cạnh ABC và chu vi tam giác ABC b) kẻ AK vuông góc BC biết AK = 4,8 . Tính BK và CK c) đường phân giác của góc B cắt AC tại D vẽ DH vuông góc vs BC (H thuộc BC). C/m m giác ABH = HBD D) c/m DA < DC
Cho ∆ABC vuông tại A có AB = 6cm, AC = 8cm, đường cao AH, trung tuyến AM.
a) C/m: AB²= BH × BC
b) Tính BC, BH
c) Từ M kẻ MD vuông góc AB, ME vuông góc AC. Tính diện tích tứ giác HMED.
e cần câu (c), (a) (b) e lm r
a: ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
HB=6^2/10=3,6cm
c:
Xet ΔABC có
M là trung điểm của BC
MD//AC
=>D là trung điểm của AB
Xet ΔABC có
M là trung điểm của BC
ME//AB
=>E là trung điểm của AC
ΔAHC vuông tại H
mà HE là trung tuyến
nên HE=AE=CE=AC/2=4cm
ΔHAB vuông tại H
mà HD là trung tuyến
nên HD=AD=DB=AB/2=3cm
ED=AM=10/2=5cm
Vì HE^2+HD^2=ED^2
nên ΔHED vuông tại H
\(MH=\sqrt{5^2-4.8^2}=1,4\left(cm\right)\)
EM=AB/2=3cm
MH=1,4cm; EM=3cm; EH=4cm
\(P=\dfrac{1,4+3+4}{2}=4,2\left(cm\right)\)
\(S_{MHE}=\sqrt{4.2\cdot\left(4.2-1.4\right)\left(4.2-3\right)\left(4.2-4\right)}=1.68\left(cm^2\right)\)
\(S_{HED}=\dfrac{1}{2}\cdot4\cdot3=3\cdot2=6\left(cm^2\right)\)
=>\(S_{HMED}=6+1.68=7.68\left(cm^2\right)\)