Chứng minh định lý Pytago
giúp mk với
chứng minh định lý pytago đảo bằng định lý pytago thuận
có cả định lý pitago đảo à sao chúa Pain éo biết nhỉ vc
Pain Thiên Đạoko bt đừng trả lời ok mà ai chẳng bt là có pytago đảo cód đứa sống ngoài ngân hà ms ko bt
Có thể chứng minh định lý đảo Pytago bằng cách sử dụng định lý cos hoặc chứng minh như sau:
Gọi ABC là tam giác với các cạnh a, b, và c, với a2 + b2 = c2. Dựng một tam giác thứ hai có các cạnh bằng a và b và góc vuông tạo bởi giữa chúng. Theo định lý Pytago thuận, cạnh huyền của tam giác vuông thứ hai này sẽ bằng c = √a2 + b2, và bằng với cạnh còn lại của tam giác thứ nhất. Bởi vì cả hai tam giác có ba cạnh tương ứng cùng bằng chiều dài a, bvà c, do vậy hai tam giác này phải bằng nhau. Do đó góc giữa các cạnh a và b ở tam giác đầu tiên phải là góc vuông.
Chứng minh định lý đảo ở trên sử dụng chính định lý Pytago. Cũng có thể chứng minh định lý đảo mà không cần sử dụng tới định lý thuận.
Một hệ quả của định lý Pytago đảo đó là cách xác định đơn giản một tam giác có là tam giác vuông hay không, hay nó là tam giác nhọn hoặc tam giác tù
TK cho MK
chứng minh rằng: quan hệ đường xiên hình chiếu đúng (không được dùng định lý pytago)
- Định lý Pytago ?
- Định lý Pytago đảo ?
. Định lí Pytago
Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương hai cạnh góc vuông.
∆ABC vuông tại A.
=> BC2=AB2+AC2
2. Định lí Pytago đảo.
Nếu một tam giác có bình phương của một cạnh bẳng tổng bình phương các cạnh còn lại thì tam giác đó là tam giác vuông.
∆ABC :BC2=AB2+AC2
=> = 902
Hai tam giác ABC, A'B'C' vuông tại A và A' có AB = A'B', BC > B'C'.
Không sử dụng định lý Pytago, chứng minh rằng AC > A'C'
Dùng phản chứng:
- Giả sử AC < A'C'. Khi đó theo chứng minh câu a) ta có BC < B'C'. Điều này không đúng với giả thiết BC > B'C'.
Giả sử AC = A'C'. Khi đó ta có ΔABC = ΔA'B'C' (c.g.c). Suy ra BC = B'C'.
Điều này cũng không đúng với giả thiết BC > B'C'. Vậy ta phải có AC > A'C'.
(Nếu sử dụng định lý Pytago thì có thể giải bài toán sau)
Trong tam giác vuông ABC có BC 2= AB 2+ AC 2 (1)
Trong tam giác vuông A'B'C' có B'C' 2= A'B' 2+ A'C' 2 (2)
Theo giả thiết AB = A'B' nên từ (1) và (2) ta có:
- Nếu AC > A'C' thì AC 2 > A'C' 2, suy ra BC 2 > B'C' 2 hay BC > B'C'
- Nếu BC > B'C' thì BC 2 > B'C' 2, suy ra AC 2 > A'C' 2 hay AC > A'C'.
Định lý pytago,pytago đảo
Định lí Pytago: Trong tam giác vuông, bình phương cạnh huyền bằng tổng các bình phương hai cạnh góc vuông
Định lí Pytago đảo: Nếu một tam giác có bình phương một cạnh bằng tổng các bình phương hai cạnh còn lại thì tam giác đó vuông
tk
Nếu một tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông.
Tham khảo
Định lí Pytago.Nếu một tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông.Định lí Pytago đảo.
Nếu một tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông.
Định lý Pytago được sử dụng cho loại tam giác nào? Vẽ hình minh họa và ghi hệ thức của định lý đó?
Định lý Pytago được sử dụng cho loại tam giác vuông.
_Bình phương cạnh huyền (cạnh đối diện với góc vuông) bằng tổng bình phương của hai cạnh còn lại.
CÔNG THỨC :
\(^{a^2+b^2=c^2}\) (với c là độ dài cạnh huyền và a và b là độ dài hai cạnh góc vuông hay còn gọi là cạnh kề.)
k cho mk nha!Hok tốt !!!
Hình vẽ bạn tự thêm điểm nha!
Cho Tam giác ABC,kẻ AH vuông góc với BC.Dùng định lý Pytago hãy chứng minh nếu HC>HB thì: AC >AB
Nhanh nha các bạn mình đang cần gấp!
Theo định lý Pytago ta có:
\(AB^2=BH^2+AH^2\)
\(AC^2=CH^2+AH^2\)
Vì \(BH< CH\Leftrightarrow BH^2< CH^2\Leftrightarrow BH^2+AH^2< CH^2+AH^2\)
\(\Rightarrow AB^2< AC^2\Rightarrow AB< AC\)
=> đpcm
chứng minh định lí pytago
Sao cậu không tra trên google
Các cách chứng minh định lý pytago là :
Link :
www.bachkhoatrithuc.vn - Các cách chứng minh định lý Pitago,
Định lý có thể chứng minh bằng phương pháp đại số khi sử dụng 4 tam giác vuông bằng nhau có các cạnh a, b và c, các tam giác này được sắp xếp thành một hình vuông lớn có cạnh là cạnh huyền c. Các tam giác bằng nhau có diện tích , khi đó hình vuông nhỏ bên trong có cạnh là b − a và diện tích là (b − a)2.
Hãy chứng minh định lí Pytago đảo ?
Cho \(\Delta ABC\)có: \(AB^2+AC^2=BC^2\)đường cao \(AH\)
Chứng minh: \(\Delta ABC\)vuông tại A (tức Pytago đảo)
Bài làm
Áp dụng định lý Pytago ta có:
\(AB^2=AH^2+BH^2\)
\(AC^2=AH^2+HC^2\)
Theo giả thiết ta có: \(BC^2=AB^2+AC^2\)
\(\Rightarrow\)\(AH^2=BH.CH\) \(\Rightarrow\)\(\frac{AH}{CH}=\frac{BH}{AH}\)
Xét \(\Delta ABH\)và \(\Delta CAH\)có:
\(\frac{AH}{CH}=\frac{BH}{AH}\) (cmt)
\(\widehat{AHB}=\widehat{CHA}=90^0\)
suy ra: \(\Delta ABH~\Delta CAH\)
\(\Rightarrow\)\(\widehat{BAH}=\widehat{ACH}\)
suy ra: \(\widehat{BAC}=90^0\)
Trong 1 tam giac vuong co ti le cua 3 canh
Đầu tiên Bình phương của cạnh huyền ,bạn bình phương tỉ số đó lên (rồi đánh số 1 nhỏ)
Sau đó Tổng bình phương 2 cạnh còn lại rồi tính ra công lại bằng số bình phương của cạnh huyền(rồi đánh số 2)
Từ 1 và 2 suy ra:Tổng bình phương cạnh huyền bằng tổng bình phương 2 cạnh góc vuông
Vậy là bạn chứng minh bình thường rồi kết luận định lí của pitago đảo thành pitago.Vậy là xong rồi
Định lí Pytago đảo.
Nếu một tam giác có bình phương của một cạnh bẳng tổng bình phương các cạnh còn lại thì tam giác đó là tam giác vuông.
∆ABC :BC2=AB2+AC2
=> \(\widehat{BAC}\)= 902