Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Hữu Phong
Xem chi tiết
Nguyễn Đăng Nhân
23 tháng 10 2023 lúc 14:06

#include <bits/stdc++.h>

using namespace std;
long long a[1000006];
long long n;
int main()
{
    for(int i=1;i<=1000006;i++){
        a[i]=i*i;
    }
    cin>>n;
    for(int i=1;i<=n;i++){
        if(a[i]%n==0){cout<<a[i]/n;break;}
    }
    return 0;
}

trần minh huy
26 tháng 8 lúc 16:26

pịa

 

Vinne
Xem chi tiết
Đỗ Tuệ Lâm
30 tháng 1 2022 lúc 17:29

undefined

Nguyễn Việt Lâm
30 tháng 1 2022 lúc 17:29

\(n^2+3n=k^2\)

\(\Leftrightarrow4n^2+12n=4k^2\)

\(\Leftrightarrow\left(2n+3\right)^2-9=\left(2k\right)^2\)

\(\Leftrightarrow\left(2n+3\right)^2-\left(2k\right)^2=9\)

\(\Leftrightarrow\left(2n-2k+3\right)\left(2n+2k+3\right)=9\)

Phương trình ước số cơ bản

Quyên Bùi Hà
Xem chi tiết

a)Giả sử tồn tại số nguyên n sao cho \(n^2+2002\)là số chình phương.

\(\Rightarrow n^2+2002=a^2\left(a\inℕ^∗\right)\)

\(\Rightarrow a^2-n^2=2002\)

\(\Rightarrow a^2+an-an-n^2=2002\)

\(\Rightarrow a\left(a+n\right)-n\left(a+n\right)=2002\)

\(\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)

Mà \(2002⋮2\)\(\Rightarrow\orbr{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}\left(1\right)}\)

Ta có : \(\left(a+n\right)-\left(a-n\right)=-2n\)

\(\Rightarrow\)\(a-n\)và \(a+n\)có cùng tính chẵn lẻ \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\hept{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}}\)

Vì 2 là số nguyên tố \(\Rightarrow\left(a-n\right)\left(a+n\right)⋮4\)

mà 2002 không chia hết cho 4

\(\Rightarrow\)Mâu thuẫn

\(\Rightarrow\)Điều giả sử là sai

\(\Rightarrow\)Không tồn tại số nguyên n thỏa mãn đề bài

Khách vãng lai đã xóa
AhJin
Xem chi tiết
shitbo
6 tháng 3 2021 lúc 8:23

https://h7.net/hoi-dap/toan-6/tim-n-biet-1-2-3-n-la-so-chinh-phuong-faq291864.html

bạn tham khảo

Khách vãng lai đã xóa
Nguyễn Ngọc Linh
Xem chi tiết
Bên nhau trọn đời
Xem chi tiết
Nguyễn Minh Quang
10 tháng 10 2021 lúc 7:48

ta có :

undefined

Khách vãng lai đã xóa
๒ạςђ ภђเêภ♕
Xem chi tiết
Witch Rose
24 tháng 6 2019 lúc 8:17

Ta thấy: \(4n^2+14n+7=\left(n+3\right)\left(4n+2\right)+1\)

Do n là số nguyên dương \(\Rightarrow4n^2+14n+7\)và n+3 nguyên tố cùng nhau

\(\Rightarrow\left(n+3\right)\left(4n^2+14n+7\right)\)là 1 SCP thì n+3 và \(4n^2+14n+7\)là 1 số chính phương

Do n nguyên dương \(\Rightarrow\left(2n+3\right)^2\le4n^2+14n+7< \left(2n+4\right)^2\)\(\Rightarrow4n^2+14n+7=\left(2n+3\right)^2\Leftrightarrow n=1\)khi đó n+3=4 là 1 scp 

Thử lại với n=1 \(\left(n+3\right)\left(4n^2+14n+7\right)=100\left(tm\right)\)

Vậy n=1

Nguyễn Minh Nhật
Xem chi tiết
Hương Lê
Xem chi tiết