Cho x/10=y/6 và x.y=60
Tìm x
x/-15 = -60/x
cho tỉ lệ thức x/4 và y/7. x.y = 117. tìm x và y
x/—15=—60/x
=> x2=—15.(—60)
=> x2=900
==> x= +30
x/4 = y/7 và x.y = 117( đề sai hả bn)
bài 5: tìm x, y, z bt:
a, x/8 = y/12 vs x + y = 60
b, x/3 = y/6 vs x.y = 162
c, x/y = 2/5 vs x.y = 40
d, x/7 = y/6, y/8 = z/5 vs x + y - z = 37
e, 10x = 15y = 21z vs 3x - 5z + 7y = 37
a) Ta có hệ phương trình:
x/8 = y/12
x + y = 60 Giải bằng cách thay x/8 bằng y/12 trong phương trình thứ hai, ta có:
(y/12)*8 + y = 60
2y + y = 60
y = 20 Thay y = 20 vào x + y = 60, ta có x = 40. Vậy kết quả là x = 40, y = 20.
b) Ta có hệ phương trình:
x/3 = y/6
x*y = 162 Thay x/3 bằng y/6 trong phương trình thứ hai, ta có:
y^2 = 324
y = 18 Thay y = 18 vào x/3 = y/6, ta có x = 9. Vậy kết quả là x = 9, y = 18.
c) Ta có hệ phương trình:
x/y = 2/5
xy = 40 Từ phương trình thứ nhất, ta có x = 2y/5. Thay vào xy = 40, ta có:
(2y/5)*y = 40
y^2 = 100
y = 10 Thay y = 10 vào x = 2y/5, ta có x = 4. Vậy kết quả là x = 4, y = 10.
d) Ta có hệ phương trình:
x/7 = y/6
y/8 = z/5
x + y - z = 37 Thay x/7 bằng y/6 trong phương trình thứ ba, ta có x = (7/6)*y - z. Thay y/8 bằng z/5 trong phương trình thứ ba, ta có y = (8/5)*z. Thay x và y vào phương trình thứ ba, ta được:
(7/6)*y - z + y - z = 37
(19/6)*y - 2z = 37 Thay y = (8/5)*z vào phương trình trên, ta có:
(19/6)*(8/5)*z - 2z = 37
z = 30 Thay z = 30 vào y = (8/5)*z, ta có y = 48. Thay y và z vào x/7 = y/6, ta có x = 35. Vậy kết quả là x = 35, y = 48, z = 30.
e) Ta có hệ phương trình:
10x = 15y = 21z
3x - 5z + 7y = 37 Từ phương trình thứ nhất, ta có:
x = 3z/7
y = 3z/5 Thay x và y vào phương trình thứ hai, ta có:
3z/73 - 5z + 73z/5 = 37
3z - 5z + 12z - 245 = 0
10z = 245
z = 24.5 Thay z = 24.5 vào x = 3z/7 và y = 3z/5, ta có x = 10.5 và y = 14.7. Tuy nhiên, kết quả này không phải là một cặp số nguyên. Vậy hệ phương trình không có nghiệm thỏa mãn.
a) x/y = 9/11 và x+y =60
b) x/y= 1,2/2,5 và y-x = 26
c) 7x=4y và y-x=60
d)x/5=y/6=y/8=z/7 và x+y+z=69
e) x/y=2/5 và x.y =10
f) x-1/2=y+3/4=z-5/6 và 5z-3x-4y=50
a) Ta có: \(\frac{x}{y}=\frac{9}{11}.\)
=> \(\frac{x}{9}=\frac{y}{11}\) và \(x+y=60.\)
Áp dụng tính chất dãy tỉ số băng nhau ta được:
\(\frac{x}{9}=\frac{y}{11}=\frac{x+y}{9+11}=\frac{60}{20}=3.\)
\(\left\{{}\begin{matrix}\frac{x}{9}=3=>x=3.9=27\\\frac{y}{11}=3=>y=3.11=33\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(27;33\right).\)
b) Ta có: \(\frac{x}{y}=\frac{1,2}{2,5}\)
=> \(\frac{x}{1,2}=\frac{y}{2,5}\) và \(y-x=26.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{1,2}=\frac{y}{2,5}=\frac{y-x}{2,5-1,2}=\frac{26}{1,3}=20.\)
\(\left\{{}\begin{matrix}\frac{x}{1,2}=20=>x=20.1,2=24\\\frac{y}{2,5}=20=>y=20.2,5=50\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(24;50\right).\)
d) Ta có: \(\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{40}=\frac{y}{48}.\)
\(\frac{y}{8}=\frac{z}{7}\Rightarrow\frac{y}{48}=\frac{z}{42}.\)
=> \(\frac{x}{40}=\frac{y}{48}=\frac{z}{42}\) và \(x+y+z=69.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{40}=\frac{y}{48}=\frac{z}{42}=\frac{x+y+z}{40+48+42}=\frac{69}{130}\) (câu d) hình như đề bị sai rồi bạn ơi, kết quả lớn lắm)
Chúc bạn học tốt!
Tìm x và y
X/5 = Y/3 và X.Y=60
Đặt x/5=k => x = 5k
y/3= k => y = 3k
Theo bài ra ta có : x . y = 60
Hay 5k . 3k = 60
<=> 15k2 = 60
<=> k2 = 4
<=> k = +4 hoặc k = -4
Vậy x = 20 hoặc x = -20
y = 12 hoặc y = -12
x/5 = y/3 = k
=> x = 5k; y = 3k
=> xy = 5k.3k = 15k2 = 60
=> k2 = 4
=> k = 2 hoặc k = -2
*k = 2 => x = 2.5 = 10; y = 2.3 = 6
*k = -2 => x = -2.5 = -10; y = -2.3 = -6
vậy_
\(\frac{x}{5}=\frac{y}{3}\Rightarrow\left(\frac{x}{5}\right)^2=\frac{x}{5}.\frac{y}{3}=\frac{x.y}{15}=\frac{60}{15}=4\)
\(\frac{x^2}{25}=4\)
\(x^2=100\)
\(\orbr{\begin{cases}x=-10\\x=10\end{cases}\Rightarrow}\orbr{\begin{cases}y=-6\\y=6\end{cases}}\)
Vậy \(\left(x,y\right)=\left\{\left(10,6\right);\left(-10,-6\right)\right\}\)
Cho y,x là 2 số nguyên dương và x2+y2+10 chia het cho x.y. Cm (x2+y2+10): x.y chia het cho 4 và >=12. Giải giup mình
Tìm x y biết x/3=y/5 và x.y =60
Áp dụng t/c dãy ................. :
\(\frac{x}{3}=\frac{y}{5}=\frac{x.y}{3.5}=\frac{60}{15}=4\)
\(\Rightarrow\frac{x}{3}=4\Rightarrow x=12\)
\(\Rightarrow\frac{y}{5}=4\Rightarrow y=20\)
Coi x/3=y/5=k=>x=3k,y=5k
Ta có : x.y=3k.5k=15.k2=60=>k2=60:15=4=>k=2;(-2)
Với k=2 =>x=6;y=10
Với k=(-2)=> x=(-6);y=(-10)
x : 5 = y:3 và x.y=60
đặt : x:5 = y:3 =k
=> x = 5.k và y = 3.k
=> 5k . 3k = 60
15.k^2 = 60
k^2 = 60 : 15
k^2 = 4
=> k^2 = 2^2
=> k = 2
Từ : x = 5.k = 5 . 2 = 10
y = 3.k = 3 . 2 = 6
Vậy : x = 10 và y = 6
1.(x2-5).(x2-10) <0
2. Tìm tất cả các số nguyên x,y sao cho x.y=-6 và x<y
Cho x>y>0; và x-y= 7; x.y=60. Không tính x, y hãy tính :
a) x^2-y^2
b) x^4+y^4
Ta có x=7+y thay vào x.y=60 ta được (7+y).y=60 =>y=-12 , x=-5
a)x2-y2=(-12)2-(-5)2=119
b)x4+y4=(-12)4+(-5)4=21361
có hệ thức viet nhanh hơn mà mình quên rồi :)) nhớ nhe