a) Ta có: \(\frac{x}{y}=\frac{9}{11}.\)
=> \(\frac{x}{9}=\frac{y}{11}\) và \(x+y=60.\)
Áp dụng tính chất dãy tỉ số băng nhau ta được:
\(\frac{x}{9}=\frac{y}{11}=\frac{x+y}{9+11}=\frac{60}{20}=3.\)
\(\left\{{}\begin{matrix}\frac{x}{9}=3=>x=3.9=27\\\frac{y}{11}=3=>y=3.11=33\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(27;33\right).\)
b) Ta có: \(\frac{x}{y}=\frac{1,2}{2,5}\)
=> \(\frac{x}{1,2}=\frac{y}{2,5}\) và \(y-x=26.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{1,2}=\frac{y}{2,5}=\frac{y-x}{2,5-1,2}=\frac{26}{1,3}=20.\)
\(\left\{{}\begin{matrix}\frac{x}{1,2}=20=>x=20.1,2=24\\\frac{y}{2,5}=20=>y=20.2,5=50\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(24;50\right).\)
d) Ta có: \(\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{40}=\frac{y}{48}.\)
\(\frac{y}{8}=\frac{z}{7}\Rightarrow\frac{y}{48}=\frac{z}{42}.\)
=> \(\frac{x}{40}=\frac{y}{48}=\frac{z}{42}\) và \(x+y+z=69.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{40}=\frac{y}{48}=\frac{z}{42}=\frac{x+y+z}{40+48+42}=\frac{69}{130}\) (câu d) hình như đề bị sai rồi bạn ơi, kết quả lớn lắm)
Chúc bạn học tốt!