\(4.\left(\frac{1}{2}-3\right)-6.\left(\frac{5}{6}x+2\right)=0\)
\(\left(4\frac{1}{6}x^2-\frac{2}{3}\right)\left(-0,75x-\frac{21}{32}\right)\left(\frac{5}{6}\left|x\right|-3\frac{1}{3}\right)\)\(\left(4\frac{1}{2}x^4+1\frac{1}{3}x\right)=0\)
\(\left(4\frac{1}{6}x^2-\frac{2}{3}\right)\left(-0,75x-\frac{21}{32}\right)\left(\frac{5}{6}\left|x\right|-3\frac{1}{3}\right)\)\(\left(4\frac{1}{2}x^4+1\frac{1}{3}x\right)=0\)
Giải phương trình:
1.\(\frac{x-5}{x-5}+\frac{x-6}{x-5}+\frac{x-7}{x-5}+...+\frac{1}{x-5}=4\left(x\in N\right)\)
2.\(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+...+\frac{1}{x^2+15x+56}=\frac{1}{14}\)
3.\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{x\left(x+2\right)}\right)=\frac{31}{16}\left(x\in N\right)\)
4.\(8\left(x^2+\frac{1}{x^2}\right)-34\left(x+\frac{1}{x}\right)+51=0\)
5.\(6x^4-5x^3-38x^2-5x+6=0\)
1) \(\frac{2}{5}x\frac{1}{3}-\frac{2}{15}:\frac{1}{5}+\frac{3}{5}x\frac{1}{3}\)
2)\(\left(3\frac{1}{3}+2,5\right):\left(3\frac{1}{6}-4\frac{1}{5}\right)-\frac{11}{31}\)
3)\(\left[6+\left(\frac{1}{2}\right)^3-\left|-\frac{1}{2}\right|\right]:\frac{3}{12}\)
4)\(\frac{18}{37}+\frac{8}{24}+\frac{19}{37}-1\frac{23}{24}+\frac{2}{3}\)
5)\(\left(-2\right)^3x\left(\frac{3}{4}-0,25\right):\left(2\frac{1}{4}-1\frac{1}{6}\right)\)
6)\(\left(\frac{2}{5}\right)^2+5\frac{1}{2}x\left(45-2\right)+\frac{23}{4}\)
7)\(\frac{4}{9}-19\frac{1}{3}-\frac{4}{9}x39\frac{1}{3}\)
8)\(\left(-\frac{1}{2}\right)^2:\frac{1}{4}-2x\left(-\frac{1}{2}\right)^2\)
9)\(125\%x\left(-\frac{1}{2}\right)^3:\left(1\frac{5}{16}-1,5\right)+2008^0\)
giúp mình nha mai mình học rùi
1. tinh` giá trị biểu thức ( tính nhanh nếu có thế )
\(a)\frac{-6}{11}.\frac{5}{13}+\frac{-6}{11}.\frac{8}{13}-\left(\frac{-2}{5}\right)^0\) \(b)\left(2\frac{2}{3}+3\frac{1}{2}\right);\left(4\frac{3}{4}-2\frac{1}{6}\right)+\frac{19}{31}\) \(c)2,4:\left(-2\right)^3+\left(3-\frac{9}{11}\right).1\frac{3}{8}\)
\(d)\left(-\frac{3}{4}\right)^2:\frac{-3}{8}+\frac{1}{2}-\frac{3}{4}-\left(\frac{-78}{57}\right)^0\)
2. tìm x
\(a)x+\frac{-1}{5}=\left(-\frac{3}{4^{ }}\right)^2\) \(b)\left|\frac{5}{2}x+\frac{2}{3}\right|-\frac{1}{4}=0\) \(c)\frac{2}{3}x-\frac{1}{2}=\frac{5}{12}+\frac{1}{2}x\) \(d)\left(x-\frac{1}{4}\right)^4=\frac{1}{81}\)
\(e)4x+3\frac{1}{4}=x-\frac{1}{4}\) \(g)\left(x-\frac{1}{3}\right)^3=\frac{1}{27}\)
\(1.\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}
\)
2.\(\frac{2x^4}{\left(x+1\right)^2}-\frac{5x^2}{x+1}+2=0\)
3.\(\left(x+\frac{1}{x}\right)^2-6\left(x+\frac{1}{x}\right)+8=0\)
4.\(\left(x^2+\frac{1}{x^2}\right)-4\left(x+\frac{1}{x}\right)+6=0\)
5.\(\frac{2x}{3x^2-x+2}-\frac{7x}{3x^2+5x+2}=1\)
\(A=\left(6:\frac{3}{5}-1\frac{1}{6}x\frac{6}{7}\right):\left(4\frac{1}{5}x\frac{10}{11}+5\frac{2}{11}\right)\)\(B=\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{4}\right)x.......x\left(1-\frac{1}{2015}\right)x\left(1-\frac{1}{2016}\right)\)
\(C=5\frac{9}{10}:\frac{3}{2}-\left(2\frac{1}{3}x4\frac{1}{2}-2x2\frac{1}{3}\right):\frac{7}{4}\)
TÌM X
a,\(\left(\frac{1}{7}x-\frac{2}{7}\right).\left(\frac{1}{5}x+\frac{3}{5}\right).\left(\frac{1}{3}x+\frac{4}{3}\right)=6\)
b,\(\left(x^2-4\right).\left(2x+\frac{4}{3}\right)=0\)
Giải phương trình:
1. \(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
2. \(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
3. \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\)
4. \(\frac{x+3}{2}-\frac{x-1}{3}=\frac{x+5}{6}+1\)
5. \(\frac{x-4}{5}-\frac{3x-2}{10}-x=\frac{2x-5}{3}-\frac{7x+2}{6}\)
6. \(\frac{\left(x+2\right)\left(x+10\right)}{3}-\frac{\left(x+4\right)\left(x+10\right)}{12}=\frac{\left(x-2\right)\left(x+4\right)}{4}\)
7. \(\frac{\left(x+2\right)^2}{8}-2\left(2x-1\right)=25+\frac{\left(x-2\right)^2}{8}\)
8.\(\frac{7x^2-14x-5}{5}=\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}\)
9. \(\frac{\left(2x-3\right)\left(2x+3\right)}{8}=\frac{\left(x-4\right)^2}{6}+\frac{\left(x-2\right)^2}{3}\)
10. \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
Điều kiện: $ - \frac{1}{3} \le x \le 6$
Ta nhẩm thấy x = 5 là nghiệm của PT, thêm bớt và trục căn thức ta có:
Phương trình $ \Leftrightarrow \left( {\sqrt {3x + 1} - 4} \right) - \left( {\sqrt {6 - x} - 1} \right) + \left( {3{x^2} - 14x - 5} \right) = 0$
$ \Leftrightarrow \frac{{3\left( {x - 5} \right)}}{{\sqrt {3x + 1} + 4}} + \frac{{x - 5}}{{\sqrt {6 - x} + 1}} + \left( {3x + 1} \right)\left( {x - 5} \right) = 0$
$ \Leftrightarrow \left( {x - 5} \right)\left[ {\frac{3}{{\sqrt {3x + 1} + 4}} + \frac{1}{{\sqrt {6 - x} + 1}} + \left( {3x + 1} \right)} \right] = 0 \Leftrightarrow \left( {x - 5} \right)g\left( x \right) = 0$
Với điều kiện trên ta thấy g(x) > 0 vậy x = 5 là nghiệm của PT.