so sánh A=10^100+5/10^100-7 với B=10^100+3/10^100-9
nhanh hộ mình nha
so sánh (100^10+1)/(100^10-1) với (10^100+1)/(10^100-3)
giúp mình bài này với ạ
đặt A=100^10+1/100^10-1
B=10^100+1/10^100-3
ta có:\(A=\frac{100^{10}+1}{100^{10}-1}=\frac{100^{10}-1+2}{100^{10}-1}=\frac{100^{10}-1}{100^{10}-1}+\frac{2}{100^{10}-1}=1+\frac{2}{100^{10}-1}\)
\(B=\frac{10^{100}+1}{10^{100}-3}=\frac{10^{100}-3+4}{10^{100}-3}=\frac{10^{100}-3}{10^{100}-3}+\frac{4}{10^{100}-3}=1+\frac{4}{10^{100}-3}=1+\frac{4}{100^{10}-3}\)
vì 10010-1>10010-3
=>\(\frac{4}{100^{10}-1}<\frac{4}{100^{10}-3}\)
=>A<B
Ta có:
\(\frac{100^{10}+1}{100^{10}-1}=\frac{100^{10}-1+2}{100^{10}-1}=\frac{100^{10}-1}{100^{10}-1}+\frac{2}{100^{10}-1}=1+\frac{2}{10^{20}-1}=1+\frac{4}{2.10^{20}-2}\)
\(\frac{10^{100}+1}{10^{100}-3}=\frac{10^{100}-3+4}{10^{100}-3}=\frac{10^{100}-3}{10^{100}-3}+\frac{4}{10^{100}-3}=1+\frac{4}{10^{100}-3}=1+\frac{4}{10^{100}-3}\)
Thấy: \(2.10^{20}-2<10^{100}-3\)
\(\Rightarrow\frac{4}{2.10^{20}-1}>\frac{4}{10^{100}-3}\)
\(\Rightarrow\frac{100^{10}+1}{100^{10}-1}>\frac{10^{100}+1}{10^{100}-3}\)
so sánh A=\(\frac{100^{10}+1}{100^{10}-1}\) và B=\(\frac{100^{10}-1}{100^{10}-3}\)
Mình cần câu trả lời ngay bây giờ mong các bạn thông cảm
+> Ta đi chứng minh tính chất \(\frac{a}{b}>1\)thì \(\frac{a}{b}>\frac{a+c}{b+c}\)
Có\(\frac{a}{b}>1\Rightarrow a>b\)
\(\Rightarrow ac>bc\) \(\Rightarrow ac+ab>bc+ab\)\(\Rightarrow a\left(b+c\right)>b\left(a+c\right)\)\(\Rightarrow\frac{a}{b}>\frac{a+c}{b+c}\)\(\left(1\right)\)
+> Aps dụng tính chất (1) vào b thức B ta có:
\(B=\frac{100^{10}-1}{100^{10}-3}>\frac{100^{10}-1+2}{100^{10}-3+2}=\frac{100^{10}+1}{100^{10}-1}\)
\(\Rightarrow B>\frac{100^{10}+1}{100^{10}-1}\)
\(\Rightarrow B>A\)
Vậy \(B>A\)
A=100^11-10/100^12-10 và B=100^10+1/100^11+1. Hãy so sánh A và B
So sánh
\(\dfrac{7}{10}\)\(...\)\(\dfrac{43}{100}\) \(\dfrac{6}{10}\)\(...\)\(\dfrac{85}{100}\) \(\dfrac{7}{10}\)\(...\)\(\dfrac{70}{100}\)
\(\dfrac{7}{10}=\dfrac{70}{100}>\dfrac{43}{100};\dfrac{6}{10}=\dfrac{60}{100}< \dfrac{85}{100};\dfrac{7}{10}=\dfrac{70}{100}\)
\(\dfrac{7}{10}>\dfrac{43}{100};\dfrac{6}{10}< \dfrac{85}{100};\dfrac{7}{10}=\dfrac{70}{100}\)
cho A =1/2*3/4*5/6*................*99/100
B=2/3*4/5*6/7*.................*100/101
a, so sánh A và B
b, tính A*B
c,chứng tỏ A>1/10
các bạn giải ra rõ cho mình nha
a) Ta thấy \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};...;\frac{99}{100}< \frac{100}{101}\)
\(\Rightarrow A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
b) \(A.B=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)\)
\(A.B=\frac{1.\left(3.5...99\right).\left(2.4.6...100\right)}{\left(2.4.6...100\right).\left(3.5.7...99\right).101}=\frac{1}{101}\)
c) vì A < b nên A . A < A . B < \(\frac{1}{101}< \frac{1}{100}\)
do đó : A . A < \(\frac{1}{10}.\frac{1}{10}\)suy ra A < \(\frac{1}{10}\)
So sánh: \(A=\frac{100^{10}+1}{100^{10}-1}\)và \(B=\frac{100^{10}-1}{100^{10}-3}\)
ta có:\(A=\frac{100^{10}+1}{100^{10}-1}=\frac{100^{10}-1+2}{100^{10}-1}=\frac{100^{10}-1}{100^{100}-1}+\frac{2}{100^{10}-1}=1+\frac{2}{100^{10}-1}\)
\(B=\frac{100^{10}-1}{100^{10}-3}=\frac{100^{10}-3+2}{100^{10}-3}=\frac{100^{10}-3}{100^{10}-3}+\frac{2}{100^{10}-3}=1+\frac{2}{100^{10}-3}\)
vì 10010-1>10010-3
\(\Rightarrow\frac{2}{100^{10}-1}<\frac{2}{100^{10}-3}\)
=>A<B
So sánh:
a) G=10^100+2/10^100-1 và H=10^8/10^8-3
b) E=98^99+1/98^89+1 và F=98^98/98^88+1
c) 5/3 và 5+m/3+m với m thuộc N*
GIÚP MÌNH VỚI CÁC BẠN ƠI !
BÀI 1:
Cho A =1/5+1/5^2+1/5^3+...+1/5^99+1/5^100
a.Tính A?
So sánh A với 1/4
BÀI 2 :
So sánh :
a. A=9/a^2014+7/a^2014 và B=8/a^2014+8/a^2013 với A thuộc N*
b . So sánh A và B với A=10^2009+1/10^2010+1 và B=10^2010+1/10^2011+1
c . So sánh A=10^2016+1/ 10^2015+1 ; B=10^2015+1/10^2014+1
a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)
b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)
So sánh 2100 với 1030 và 1031
Từ đó cho biết 2100 trong hệ thập phân có bao nhiêu chứ số
GIẢI RÕ RA HỘ EM NHA