Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vo duc anh huy
Xem chi tiết
Khôi 2k9
6 tháng 12 2020 lúc 21:22

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Leftrightarrow2+\frac{x+4}{2000}+\frac{x+3}{2001}=2+\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Leftrightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2001}+1\right)\)

\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

Mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)

Suy ra x+2004=0

\(\Leftrightarrow x=-2004\)

Khách vãng lai đã xóa
Nguyễn Thị Hà My
Xem chi tiết
Su Su
Xem chi tiết
Hoàng Hà Vy
13 tháng 5 2017 lúc 9:54

\(x\)là dấu nhân hả bạn? Nếu vậy thì mk làm cho nhé

\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot....\cdot\left(1-\frac{1}{20}\right)\)

\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot.......\cdot\frac{17}{18}\cdot\frac{18}{19}\cdot\frac{19}{20}=\frac{1}{20}\)

Vậy \(A=\frac{1}{20}\)

\(B=1\frac{1}{2}\cdot1\frac{1}{3}\cdot1\frac{1}{4}\cdot........\cdot1\frac{1}{2005}\cdot1\frac{1}{2006}\cdot1\frac{1}{2007}\)

\(B=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot......\cdot\frac{2006}{2005}\cdot\frac{2007}{2006}\cdot\frac{2008}{2007}=\frac{2008}{2}=1004\)

Vậy \(B=1004\)

Đào Trọng Luân
13 tháng 5 2017 lúc 9:57

DẤU CHẤM LÀ DẤU NHÂN

a, 

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{19}{20}=\frac{1}{20}\)

b, \(1\frac{1}{2}.1\frac{1}{3}....1\frac{1}{2017}=\frac{3}{2}.\frac{4}{3}....\frac{2018}{2017}=\frac{2018}{2}=1009\)

nguyễn đan vy
Xem chi tiết
Khôi Nguyên Hacker Man
11 tháng 3 2017 lúc 18:45

=3/2*4/3*5/4...*11/10

=5,5

Trần Điền
Xem chi tiết
Ngọc Trân
Xem chi tiết
Đinh Đức Hùng
3 tháng 2 2017 lúc 11:01

\(1\frac{1}{2}.1\frac{1}{3}.1\frac{1}{4}.....1\frac{1}{2015}\)

\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}........\frac{2016}{2015}\)

\(=\frac{3.4.5.....2016}{2.3.4....2015}=\frac{2016}{2}=1008\)

Thanh Thuy Tran
3 tháng 2 2017 lúc 10:33

\(A=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{2016}{2015}\)

\(A=\frac{2016}{2}=1008\)

Xong nhé bạn!

phanh huỳnh bảo châu
Xem chi tiết
Pumpkin Night
26 tháng 11 2019 lúc 21:23

\(2x^2-3x-24=0\)

\(\Delta=9-4.\left(-24\right).2=201>0\) => pt có 2 n0 pb

Theo Vi-ét:

\(\left\{{}\begin{matrix}x_1+x_2=\frac{3}{2}\\x_1x_2=-12\end{matrix}\right.\)

\(\Rightarrow M=\frac{x_1+x_2}{x_1x_2}=\frac{\frac{3}{2}}{-12}=-\frac{1}{8}\)

Khách vãng lai đã xóa
♡Trần Lệ Băng♡
Xem chi tiết
Lê Hồ Trọng Tín
7 tháng 7 2019 lúc 9:44

Nếu đề bài là

Tính P=\(\frac{x_1^2+x_1-1}{x_1}\)-\(\frac{x_2^2+x_2-1}{x_2}\)

Thì lời giải như sau:

Theo định lý Viete, ta có:

x1.x2=-1

Khi đó P=\(\frac{x_1^2+x_1+x_1.x_2}{x_1}\)-\(\frac{x_2^2+x_2+x_1.x_2}{x_2}\)

Do x1 và x2 không thể bằng không nên ta chia tử mẫu của mỗi hạng tử cho x1,x2

Khi đó P=x1+x2+1-(x2+x1+1)=0

Lê Văn Hoàng
Xem chi tiết
Tuấn
14 tháng 1 2018 lúc 20:36

viet dc k bạn

Nguyễn Trãi
2 tháng 4 2018 lúc 17:33

\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)

Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)

=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)

Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)

Despacito
2 tháng 4 2018 lúc 17:43

\(x^2-2\left(m-2\right)x+\left(m^2+2m-3\right)=0\)   \(\left(#\right)\)

từ pt \(\left(#\right)\) ta có  \(\Delta'=\left[-\left(m-2\right)\right]^2-m^2-2m+3\)

\(\Delta'=m^2-4m+4-m^2-2m+3\)

\(\Delta'=-6m+7\)

để pt  \(\left(#\right)\) có 2 nghiệm \(x_1,x_2\) thì \(\Delta'>0\)

\(\Leftrightarrow-6m+7>0\)

\(\Leftrightarrow-6m>-7\)

\(\Leftrightarrow m< \frac{7}{6}\)

theo định lí vi et \(\hept{\begin{cases}x_1+x_2=2m-4\\x_1.x_2=m^2+2m-3\end{cases}}\)

theo bài ra ta có \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)

\(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)

\(\Leftrightarrow\left(x_1+x_2\right).5=\left(x_1.x_2\right)\left(x_1+x_2\right)\)

\(\Leftrightarrow\left(x_1+x_2\right).5-\left(x_1.x_2\right)\left(x_1+x_2\right)=0\)

\(\Leftrightarrow\left(x_1+x_2\right).\left(5-x_1.x_2\right)=0\)

\(\Leftrightarrow\left(2m-4\right)\left(5-m^2-2m+3\right)=0\)

\(\Leftrightarrow\left(2m-4\right)\left(m^2+2m-8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2m-4=0\left(1\right)\\m^2+2m-8=0\left(2\right)\end{cases}}\)

từ \(\left(1\right)\)  ta có \(m=2\)  ( KTM ) 

từ \(\left(2\right)\) ta có \(m^2+2m-8=0\)  \(\left(3\right)\)

từ pt \(\left(3\right)\)  ta có \(\Delta'=1^2-\left(-8\right)=1+8=9>0\Rightarrow\sqrt{\Delta'}=3\)

vì \(\Delta'>0\)  nên pt \(\left(3\right)\)  có 2 nghiệm phân biệt \(m_1=-2+3=1\)  ;  ( TM ) 

 \(m_2=-2-3=-5\)  ( TM ) 

vậy \(m_1=-5;m_2=1\)  là các giá trị cần tìm