Cho tam giác ABC có AB = 4cm, AC = 5cm, BC = 6cm. Trên tia đối của tia AB lấy điểm D sao cho AD = 5cm.
a) Tam giác ABC đồng dạng với tam giác nào ?
b) Tính độ dài CD ?
c) Chứng minh rằng: góc BAC = 2 lần góc ACB
Cho tam giác ABC có AB = 4cm; AC = 5cm; BC = 6cm. Trên tia đối tia AB lấy D sao cho AD = 5cm.
a. Tam giác ABC đồng dạng với tam giác nào?
b. Tính CD.
c. CMR: \(\widehat{BAC}=2\widehat{ACB}\)
\(BD=AB+AD=4+5=9\left(cm\right)\)
\(\Delta ABC\) và \(\Delta CBD\) có:
\(\frac{AB}{BC}=\frac{BC}{BD}\left(=\frac{2}{3}\right)\)
Góc B chung
\(\Rightarrow\Delta ABC\infty\Delta CBD\left(c.g.c\right)\Rightarrow\hept{\begin{cases}\widehat{ACB}=\widehat{D}\\\frac{AB}{CB}=\frac{AC}{CD}\left(1\right)\end{cases}}\)
b, Từ (1) thay số vào: \(\frac{4}{6}=\frac{5}{CD}\Rightarrow CD=7,5\left(cm\right)\)
c, \(\widehat{BAC}=\widehat{D}+\widehat{ACD}=2\widehat{D}=2\widehat{ACB}\)
cho tam giác ABC có AB=6cm , AC =7,5cm , BC =9cm . Trên tia đối của tiaAB lấy điểm D sao cho AD =AC . a, chứng minh tam giác ABC đồng dạng với tam giác CBD . b , tính CD . c, chúng minh góc BAC = 2 góc ACB
(Hình bạn tự vẽ)
a) Ta có: \(\dfrac{AB}{BC}=\dfrac{6}{9}=\dfrac{2}{3}\)
\(\dfrac{BC}{BD}=\dfrac{9}{6+7,5}=\dfrac{2}{3}\)
Xét ΔABC và ΔCBD có:
Góc B chung
\(\dfrac{AB}{BC}=\dfrac{BC}{BD}\)\(\left(=\dfrac{2}{3}\right)\)
⇒ΔABC ∼ ΔCBD (c.g.c)
b) Theo câu a ta có: ΔABC ∼ ΔCBD
⇒ \(\dfrac{AB}{AC}=\dfrac{CB}{CD}\)\(=\dfrac{6}{7,5}=\dfrac{9}{CD}\)
⇒ \(CD=\dfrac{7,5.9}{6}\)\(=\dfrac{45}{4}=11,25\)
c) Theo câu a ta có: ΔABC ∼ ΔCBD
⇒ Góc BAC = góc BCD (1)
Xét ΔBCD có: \(\dfrac{BA}{AD}=\dfrac{BC}{CD}\)
Hay \(\dfrac{6}{7,5}=\dfrac{9}{11,25}\)\(=\dfrac{4}{5}\)
⇒ CA là phân giác góc BCD
⇒ Góc ACB= góc ACD (2)
Từ (1), (2) ⇒ góc BAC = 2 góc ACB
Bài 1 : Cho tan giác ABC cân tại A ,dường cai Ah=9cm và BC=24cm.
a)Tính độ dài AB,AC ?
b)Trên CB lấy điểm M sa cho CM=5cm ,trên CA lấy điểm Nsao cho CN=8cm.Chứng minh tam giác CMN đồng dạng với tam giác CAB
c)MN kéo dài cắt BA tại I . Chứng minh IA.IB=IM.IN
Bài 2 : Cho tam giác ABC có AB=12cm;BC=9cm;AC=10cm;trên tia đối của tia AB, AC lần lượt lấy các điểm D,E sao cho AD=5cm,AE=6cm
a)chứng minh tam giác ABC và tam giác AED đồng dạng
b)tính độ dài đoạn thẳng ED
c)gọi M là giao điểm của BE và CD chứng minh MB.ME=MC.MD
Bài 3 : cho tam giác ABC có AB=6m;BC=10cm;AC=9cm;trên tia AC lấy điểm D sao cho AD=4cm
a)chứng minh tam giác ABC và tam giác ADB đồng dạng
b)tính độ dài đoạn thẳng DB
c)Kẻ DE song song với AB (E thuộc BC ) Chứng minh BD2=BC.BE
Cho tam giác ABC có AB =6cm AC = 7,5cm BC=9cm Trên tia đối của tia AB lấy D sao cho AD=AC
a) Chứng minh tam giác ABC đồng dạng tam giác CBD
b) Tính CD=?
c) Chứng minh góc BAC =2 góc ACB
cho tam giác ABC có AB=4cm, BC = 6cm. Trên tia đối của tia AB lấy D sao cho AD=5 cm
a.Chứng minh tam giác ABC đồng dạng tam giác CBD
b. AC=7cm. Tính CD
c. Đường phân giác của góc ABC cắt CA, CD lần lượt tại E, F. Chứng minh CE.CF=EA.FD
a: Xét ΔABC và ΔCBD có
AB/CB=BC/BD
góc B chung
=>ΔABC đồg dạng với ΔCBD
b: ΔABC đồng dạng với ΔCBD
=>AC/CD=BC/BD=6/9=2/3
=>7/CD=2/3
=>CD=7:2/3=7*3/2=21/2(cm)
c: CF/FD=BC/BD
EA/CE=BA/BC
mà BC/BD=BA/BC
nên CF/FD=EA/CE
=>CF*CE=FD*EA
.Cho ABC có AB = 4cm, AC = 5cm, BC = 6cm. Trên tia đối của tia AB lấy điểm D sao cho AD = 5cm. a) Chứng minh: ABC đồng dạng với CBD. b) Tính CD
a) Ta có: BD=AB+AD(A nằm giữa B và D)
nên BC=4+5=9(cm)
Xét ΔABC và ΔCBD có
\(\dfrac{AB}{CB}=\dfrac{BC}{BD}\left(\dfrac{4}{6}=\dfrac{6}{9}\right)\)
\(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔCBD(c-g-c)
b) Ta có: ΔABC∼ΔCBD(cmt)
nên \(\dfrac{AC}{CD}=\dfrac{BC}{BD}\)
\(\Leftrightarrow\dfrac{5}{CD}=\dfrac{6}{9}=\dfrac{2}{3}\)
hay CD=7,5(cm)
Vậy: CD=7,5cm
a)Ta có : $BD = AB + AD = 4 + 5 = 9(cm)$
Xét tam giác ABC và tam giác CBD ta có :
Góc B chung
\(\dfrac{AB}{CB}=\dfrac{BC}{BD}\left(\dfrac{4}{6}=\dfrac{6}{9}\right)\)
Suy ra tam giác ABC đồng dạng với tam giác CBD
b)
Theo câu a), ta có :
\(\dfrac{BC}{BD}=\dfrac{AC}{CD}\Leftrightarrow CD=\dfrac{9.5}{6}=7,5\left(cm\right)\)
Cho tam giác ABC vuông tại A với AB = 3cm, BC= 5cm a) tính độ dài đoạn thẳng AC b) trên tia đối của tia AB, lấy điểm D sao cho AB = AD. Chứng minh tam giác ABC= tam giác ADC, từ đó suy ra tam giác BCD cân c) trên AC lấy điểm E sao cho AE=1/3AC. Chứng minh DE đi qua trung điểm I của BC. d) chứng minh DI + 2/3 DC>DB.
a)Xét tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2\) (ĐL Pytago)
\(5^2=3^2+AC^2\)
25=9+\(AC^2\)
25-9=\(AC^2\)
\(AC^2\)=16
Vậy...
b)góc BAC=góc DAC(2 góc này ở vị trì kề bù)
Xét tam giác BAC và tam giác DAC có:
BC=AD(gt)
góc BAC=góc DAC(cmt =90độ )
AC cạnh chung
\(\Rightarrow\Delta ABC=\Delta ADC\)(2 cgv)
\(\Rightarrow BC=DC\)(..)(1)
và góc B= góc D(...)(2)
Từ (1) và(2)có tam giác BCD cân tại C
cho tam giác ABC vuông ở A; AB=48cm; AC=64cm. Trên tia đối của tia AB lấy điểm D sao cho AD=27cm; trên tia đối của tia AC lấy điểm E sao cho AE= 36cm
a) chứng minh tam giác ABC đồng dạng tam giác ADE
b) tính độ dài của đoạn BC; DE
c) chứng minh DE//BC
d) chứng minh EB vuông góc BC
Cho tam giác ABC vuông tại A. Có AB=5cm, AC=12cm
a. Tính độ dài BD
b. Trên tia đối của tia AC lấy điểm D sao cho AC=AD. Chứng minh tam giác ABC=tam giácABD
c.Từ A kẻ AE và AF lần lượt vuông góc với BD và BC tại E,F. C/m tam giác AEF cân
a: Sửa đề: Tính BC
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=5^2+12^2=169\)
=>\(BC=\sqrt{169}=13\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔABD vuông tại A có
AB chung
AC=AD
Do đó: ΔABC=ΔABD
c: Ta có: ΔABC=ΔABD
=>\(\widehat{ABC}=\widehat{ABD}\)
Xét ΔBEA vuông tại E và ΔBFA vuông tại F có
BA chung
\(\widehat{EBA}=\widehat{FBA}\)
Do đó: ΔBEA=ΔBFA
=>AE=AF
=>ΔAEF cân tại A