Chứng minh 2n+3 và 4n+4 là hai số nguyên tố cùng nhau
Chứng minh rằng:
a) 2n+1 và 3n+2 là hai số nguyên tố cùng nhau
b) 2n+3 và 4n+5 là hai số nguyên tố cùng nhau
gọi a là ước chung lớn nhất của 2n+1 và 3n+2
do đó a phải là ước của \(2\left(3n+2\right)-3\left(2n+1\right)=1\) do đó a=1
hay 2n+1 và 3n+2 là hai số nguyên tố cùng nhau.
b.gọi b là ước chung lớn nhất của 2n+3 và 4n+5
do đó b phải là ước của \(2\left(2n+3\right)-\left(4n+5\right)=1\)do đó b=1
hay 2n+3 và 4n+5 là hai số nguyên tố cùng nhau
Chứng minh 2n+3 và 4n+3 là hai số nguyên tố cùng nhau
Chứng minh 2n+3 và 4n+8 là hai số nguyên tố cùng nhau
Gọi ƯCLN(2n + 3; 4n + 8) là d
=> 2n + 3 chia hết cho d => 2(2n + 3) chia hết cho d
4n + 8 chia hết cho d
Từ 2 điều trên => (4n + 8) - 2(2n + 3) chia hết cho d
=> 4n + 8 - 4n - 6 chia hết cho d
=> (4n - 4n) + (8 - 6) chia hết cho d
=> 2 chia hết cho d
=> d thuộc {1; 2}
Ta thấy 2n + 3 là lẻ mà 2n + 3 chia hết cho d nên d lẻ
=> d = 1
=> ƯCLN(2n + 3; 4n + 8) = 1
Vậy...
Gọi ƯCLN(2n+3;4n+8)=d
Ta có: 2n+3 chia hết cho d=>2(2n+3) chia hết cho d=>4n+6 chia hết cho d
=>4n+8-(4n+6) chia hết cho d hay 2 chia hết cho d
mà 2n+3 lẻ, 4n+8 chẵn nên d=1
Vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau
Chứng minh 2n + 3 và 4n + 8 là hai số nguyên tố cùng nhau
Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
⇒ d ∈ Ư [2﴾2n + 3﴿ = 4n + 6]
﴾4n + 8﴿ ‐ ﴾4n + 6﴿ = 2
⇒ d ∈ Ư﴾2﴿ ⇒ d ∈ {1,2}
d = 2 không là ước số của số lẻ 2n+3
⇒ d = 1
vậy 2n+3 và 4n + 8 nguyên tố cùng nhau
Chứng minh rằng: 2n + 3 và 4n + 8 là hai số nguyên tố cùng nhau.
Goi d là ƯCLN ( 2n + 3 ; 4n + 8 )
\(\Rightarrow\) 2n + 3 và 4n + 8 chia hết cho d
\(\Rightarrow\) 2 . ( 2n + 3 ) chia hết cho d
1 . ( 4n + 8 ) chia hết cho d
\(\Rightarrow\) 4n + 6 chia hết cho d
4n + 8 chia hết cho d
\(\Rightarrow\) 4n + 8 - ( 4n + 6 ) chia hết cho d
4n + 8 - ( 4n - 6 ) chia hết cho d
Suy ra 2 chia hết cho d .
d € Ư ( 2 ) = { 1 ; 2 }
Mà 2n + 3 không chia hết cho 2 . Suy ra d = 1
\(\Rightarrow\) ƯCLN ( 2n + 3 ; 3n + 4 ) = 1
Vậy 2n + 3 và 3n + 4 là 2 số nguyên tố cùng nhau .
4n+8=2(2n+4)
2n+3,2n+4 ng tố cùng nhau 2 stn liên tiếp
k mình nha
chứng minh: 2n+3 và 4n+3 là hai số nguyên tố cùng nhau
bạn ơi hình như nhầm đề hai số này ko thể nguyên tố cùng nhau
nếu là đề đúng thì sẽ làm như sau(sửa 4n+3 thành 4n+4)
gọi UCLN của 2n+3 và 4n +4 là D
2n+3 và 4n+4 chia hết cho D
ta có thể viết thành 4.(2n+3)và 2.(4n+4)chia hết cho D
và ta có 8n+6 và 8n+8 chia hết cho D
và ta có kq là 2 chia hết cho D
vì hai số nguyên tố cùng nhau sẽ có UCLN =1 nên => D =1
ta sẽ lấy 8n+8-8n+6=2
Chứng minh rằng với mọi số tự nhiên n hai số 2n+ 3 và 4n + 8 là hai số nguyên tố cùng nhau
Giả sử: \(UCLN\left(2n+3;4n+8\right)=d\)
=> \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\) => \(\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
=> \(2⋮d\) => \(\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)
Có 2n+3 là số lẻ => \(2n+3⋮̸2\)
=> d = 1
=> đpcm
Chứng minh rằng 2n + 3; 4n + 8 là hai số nguyên tố cùng nhau
Giả sử ƯCLN(2n+3 ;4n+8) = d
2 n + 3 ⋮ d 4 n + 8 ⋮ d ⇒ 2 2 n + 3 ⋮ d
=> 4 n + 8 - 2 2 n + 3 = 2 ⋮ d
=>d = 1 hoặc d = 2 .
Giả sử nếu d = 2 => (2n+3) ⋮ 2 (vô lý)
Vậy d = 1 hay 2n+3 và 4n+8 là hai số nguyên tố cùng nhau
Chứng minh rằng 2 n + 3 ; 4 n + 8 là hai số nguyên tố cùng nhau