Hãy xác định điểm M nằm trong tam giác ABC để cho tích các khoảng cách từ M đến các canh của tam giác đạt giá trị lớn nhất.
Giúp mình với, cảm ơn!
Xác định M nằm trong tam giác ABC sao cho tích các khoảng cách từ M đến các cạnh của tam giác đạt giá trị lớn nhất.
Đặt BC=a; AC=b; AB=c
Từ M dựng các đường vuông góc với BC; AC; AB cắt lần lượt tại D;E;F
Đặt MD=x; ME=y; MF=z
\(S_{ABC}=S_{MBC}+S_{MAC}+S_{MAB}=\frac{ax+by+cz}{2}\) áp dụng bđt cosi
\(\frac{ax+by+cz}{3}\ge\sqrt[3]{ax.by.cx}\Rightarrow\frac{ax+by+cz}{2}\ge\frac{3\sqrt[3]{ax.by.cz}}{2}\)
\(\Rightarrow S_{ABC}\ge\frac{3.\sqrt[3]{ax.by.cz}}{2}=\frac{3\sqrt[3]{abc}.\sqrt[3]{xyz}}{2}\Rightarrow\sqrt[3]{xyz}\le\frac{2.S_{ABC}}{3.\sqrt[3]{abc}}\)
\(\Rightarrow xyz\le\frac{8.S^3_{ABC}}{27abc}\) xyz lơn nhất khi \(xyz=\frac{8.S^3_{ABC}}{27abc}=const\)
Dấu = xảy ra khi ax=by=cz \(\Rightarrow S_{MBC}=S_{MAC}=S_{MAB}\)
Nối AM cắt BC tại K, Từ B và C dựng đường vuông góc với AK cắt AK lần lượt tại P và Q
Xét tg MAB và tg MAC có chung đáy AM và S(MAB)=S(MAC) => hai đường cao tương ứng BP=CQ
Xét tg vuông BKP và tg vuông CKQ có
^PBK = ^QCK (góc so le trong)
BP=CQ (cmt)
=> tg BKP = tg CKQ (hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau) => BK=CK => AM là trung tuyến của tg ABC
C/m tương tự ta cũng có BM, CM là trung tuyến của tg ABC
=> M là trọng tâm của tg ABC
Mọi người giải giúp mình câu này với:
cho tam giác ABC vuông tại A.Xác định điểm M trong tam giác sao cho tổng các bình phương các khoảng cách từ M đến ba cạnh của tam giác đạt giá trị nhỏ nhất
Cho tam giác ABC đều. M là một điểm nằm trong tam giác. Lấy điểm D, E, F lần lượt thuộc AC, AB, BC sao cho DE=AM, DF=CM, EF=BM. Xác định vị trí của M để diện tích tam giác DEF đạt giá trị lớn nhất.
Chi tam giác đều ABC có đường cao AH dài 3cm . Gọi ! Là một điểm nằm trong tam giác. Gọi x,y,z là khoảng cách từ M đến các cạnh của tam giác . Tìm vị trí của M để x^2+y^2+z^2 đạt giá trị nhỏ nhất
Hãy tìm trong tam giác ABC một điểm M sao cho tích khoảng cách từ M đến 3 cạnh có giá trị lớn nhất
Hãy tìm trong tam giác ABC một điểm M sao cho tích khoảng cách từ M đến 3 cạnh có giá trị lớn nhất
Cho tam giác đều ABC. Gọi M là 1 điểm bất kì nằm trong tam giác. CMR: tổng các khoảng cách từ M đến 3 cạnh của tam giác có giá trị không đổi khi M thay đổi vị trí trong tam giác.
dòng này tôi viết vì có việc nhé ko phải là tl linh tinh mong thông cảm và cũng ko phải là nội dung bài làm nhé.
Cho tam giác ABC đều có cạnh bằng a. Gọi đường vuông góc từ điểm M nằm trong tam giác đến các cạnh BC, CA, AB lần lượt là MD, ME, MF. Xác định vị trí của M để $\dfrac{1}{MD}+\dfrac{1}{ME}+\dfrac{1}{MF}$ đạt giá trị nhỏ nhất, tính giá trị đó
Cho tam giác nhọn ABC. Tìm điểm P trong tam giác ABC sao cho tổng các khoảng cách từ P đến 3 cạnh của tam giác ABC đạt giá trị nhỏ nhất .