Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
rfgafd khánh
Xem chi tiết
ĐẶNG QUỐC SƠN
Xem chi tiết
đinh khánh ngân
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
21 tháng 4 2021 lúc 16:22

1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |

= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 | 

= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |

Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)

Vậy MinB = 2 <=> x = 2019

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
21 tháng 4 2021 lúc 16:24

2. ĐKXĐ : x ≥ 0

Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)

=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)

Vậy MaxC = 673 <=> x = 0

Khách vãng lai đã xóa
Nguyễn Huy Tú
21 tháng 4 2021 lúc 16:27

Bài 1 : 

\(B=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\)

Ta có : \(\left|x-2018\right|\ge0\forall x;\left|x-2019\right|\ge0\forall x;\left|x-2020\right|\ge0\forall x\)

\(\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\ge0\)

Dấu ''='' xảy ra khi \(x=2018;x=2019;x=2020\)

Vậy GTNN B là 0 khi x = 2018 ; x = 2019 ; x = 2020 

Khách vãng lai đã xóa
Quandung Le
Xem chi tiết
tinviet
21 tháng 10 2019 lúc 21:11

khó quá còn gì

Khách vãng lai đã xóa
no name
Xem chi tiết
ngonhuminh
12 tháng 1 2017 lúc 22:15

ĐK x>=0

GTNN =-7 khi x=0

\(N+7=\frac{2\sqrt{x}-7+3\sqrt{x}+7}{3\sqrt{x}+1}=\frac{5\sqrt{x}}{3\sqrt{x}+1}\ge0\)mọi x>=0 đảng thức khi x=0

Thái Doãn Kiên
Xem chi tiết
thuan doan
5 tháng 5 2019 lúc 16:51

sử dụng phương pháp miền giá trị

Thái Doãn Kiên
5 tháng 5 2019 lúc 20:32

bạn nói rõ hơn được không?

Trần Thị Thảo Ngọc
Xem chi tiết
trần hiếu
Xem chi tiết
Phạm Khánh Huyền
Xem chi tiết
Hoàng Lê Bảo Ngọc
2 tháng 10 2016 lúc 11:29
\(A=\frac{3-5\sqrt{x}}{\sqrt{x}+1}=\frac{-5\left(\sqrt{x}+1\right)+8}{\sqrt{x}+1}=\frac{8}{\sqrt{x}+1}-5\)

Ta có \(\sqrt{x}+1\ge1\Rightarrow\frac{8}{\sqrt{x}+1}-5\le3\Rightarrow A\le3\)

Max A = 3 <=> x = 0

Không tồn tại giá trị nhỏ nhất.
Yoona
Xem chi tiết
hồng hoa
16 tháng 8 2016 lúc 18:03

a) Rút gọn : Q =\(\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}+\frac{\sqrt{x}+3}{\sqrt{x}-3}-\frac{14}{9-x}\right).\frac{\sqrt{x}-3}{2}\left(x\ge0,x\ne9\right)\)

                  Q =\(\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}+\frac{\sqrt{x}+3}{\sqrt{x}-3}+\frac{14}{x-9}\right).\frac{\sqrt{x}-3}{2}\)

                  Q =\(\left(\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right).\frac{\sqrt{x}-3}{2}\)

                   Q = \(\frac{x-6\sqrt{x}+9+x+6\sqrt{x}+9+14}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{2}\)

                   Q = \(\frac{2x+32}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{2}\)

                   Q = \(\frac{2\left(x+16\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{2}\)

                   Q = \(\frac{x+16}{\sqrt{x}+3}\)

                   thay  \(x=7-4\sqrt{3}\) vào Q ta được

                       Q =\(\frac{7-4\sqrt{3}+16}{\sqrt{7-4\sqrt{3}}+3}\) =\(\frac{23-4\sqrt{3}}{\sqrt{\left(2-\sqrt{3}\right)^2+3}}\)

                                                                  =\(\frac{23-4\sqrt{3}}{2-\sqrt{3}+3}\)

                                                                  =\(\frac{23-4\sqrt{3}}{5-\sqrt{3}}\)