Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thế Mạnh
Xem chi tiết
Hùng Hoàng
13 tháng 12 2015 lúc 22:53

\(\sqrt{28n^2+1}=k\)

\(A=2k+2=4\left(\frac{k+1}{2}\right)\)

\(k^2=28n^2+1\)

\(k^2-1=28n^2\)

\(\frac{k^2-1}{28}=n^2\)

Suy ra\(k^2-1\)chia hết cho 7 vì tử nguyên mẫu nguyên mà thương cũng nguyên nên tử chia hết cho mẫu mà 28 chia hết cho 7

\(k^2\equiv1\left(mod7\right)\)

\(k\equiv1\)(mod7)

k-1 chia hết cho 7

Có \(n^2=\frac{k^2-1}{28}=\left(\frac{k-1}{14}\right)\left(\frac{k+1}{2}\right)\)

2 số trên nguyên tố cùng nhau

mà tích là số chính phương nên 2 số trên đều là số chính phương

(k+1)/2 chính phương

\(A=4\left(\frac{k+1}{2}\right)\)tích 2 số cp nên a cp

 

Hùng Hoàng
Xem chi tiết
Nguyễn Quốc Khánh
13 tháng 12 2015 lúc 22:41

tick tui 2 cái cho đủ 200

White Boy
Xem chi tiết
Phước Nguyễn
27 tháng 7 2016 lúc 12:56

Do  \(n\in N^{\text{*}}\)  \(\left(o\right)\) nên ta dễ dàng suy ra  \(2+2\sqrt{28n^2+1}\in Z^+\)

Do đó,  \(2\sqrt{28n^2+1}\in Z^+\)  dẫn đến  \(\sqrt{28n^2+1}\in Q\)  

Lại có:  \(28n^2+1\)  luôn là một số nguyên dương (do  \(\left(o\right)\))   nên   \(\sqrt{28n^2+1}\in Z^+\)

hay nói cách khác, ta đặt  \(\sqrt{28n^2+1}=m\)  (với  \(m\in Z^+\)  )

\(\Rightarrow\)  \(28n^2+1=m^2\)   \(\left(\alpha\right)\)

\(\Rightarrow\)    \(m^2-1=28n^2\)  chia hết cho  \(4\)

Suy ra  \(m^2\text{ ≡ }1\)    \(\left(\text{mod 4}\right)\)  

Hay \(m\) phải là một số lẻ có dạng \(m=2k+1\)  \(\left(k\in Z^+\right)\)

Từ  \(\left(\alpha\right)\)  suy ra  \(28n^2=\left(2k+1\right)^2-1=4k\left(k+1\right)\)

nên  \(7n^2=k\left(k+1\right)\)

Theo đó,  ta có:  \(\orbr{\begin{cases}k\\k+1\end{cases}\text{chia hết cho 7}}\)  

Xét hai trường hợp sau:

\(\text{Trường hợp 1}:\)\(k=7q\) \(\left(q\in Z^+\right)\)

Suy ra   \(7n^2=7q\left(7q+1\right)\)

\(\Rightarrow\)  \(n^2=q\left(7q+1\right)\)  \(\left(\beta\right)\)

Mặt khác, vì  \(\left(q,7q+1\right)=1\)  nên  từ  \(\left(\beta\right)\)  suy ra  \(\hept{\begin{cases}q=a^2\\7q+1=b^2\end{cases}\Rightarrow}\)  \(7a^2+1=b^2\)  \(\left(\gamma\right)\)

Tóm tại tất cả điều trên, ta có:

\(A=2+2\sqrt{28n^2+1}=2+2m=2+2\left(2k+1\right)=4+4.7q=4+28q\)

Khi đó,  \(A=4+28a^2=4\left(7a^2+1\right)=4b^2\)  (do  \(\left(\gamma\right)\)  )

Vậy,  \(A\)  là số chính phương với tất cả các điều kiện nêu trên

\(\text{Trường hợp 2:}\)\(k+1=7q\)

Tương tự

White Boy
27 tháng 7 2016 lúc 15:12

cảm ơn bn

White Boy
27 tháng 7 2016 lúc 15:48

th2 có thỏa mãn k bn?

gấukoala
Xem chi tiết
trần thảo lê
Xem chi tiết
ARMY MINH NGỌC
Xem chi tiết
Hoàng Thị Lan Hương
3 tháng 8 2017 lúc 9:21

b. ĐK \(\hept{\begin{cases}x-2\ge0\\y+2014\ge0\\z-2015\ge o\end{cases}\Rightarrow\hept{\begin{cases}x\ge2\\y\ge-2014\\z\ge2015\end{cases}}}\)

Ta có \(\sqrt{x-2}+\sqrt{y+2014}+\sqrt{z-2015}=\frac{1}{2}\left(x+y+z\right)\)

Đặt  \(\hept{\begin{cases}\sqrt{x-2}=a\ge0\\\sqrt{y+2014}=b\ge0\\\sqrt{z-2015}=c\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x-2=a^2\\y+2014=b^2\\z-2015=c^2\end{cases}\Rightarrow x+y+z}=a^2+b^2+c^2+3\)

Pt \(\Leftrightarrow a+b+c=\frac{1}{2}\left(a^2+b^2+c^2+3\right)\Leftrightarrow a^2+b^2+c^2+3=2a+2b+2c\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\Leftrightarrow\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}}\)\(\Leftrightarrow a=b=c=1\)

\(\Rightarrow\hept{\begin{cases}x-2=1\\y+2014=1\\z-2015=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=-2013\\z=2016\end{cases}\left(tm\right)}}\)

Vậy \(x=3;y=-2013;z=2016\)

Xuân Bách
Xem chi tiết
Hoàng Lê Bảo Ngọc
3 tháng 9 2016 lúc 22:19

Bạn đăng từng bài thôi :)

ILoveMath
Xem chi tiết
nguyễn khắc biên
Xem chi tiết
Thiên An
1 tháng 8 2017 lúc 16:57

4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)

\(6\sqrt{55}\)  là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa  \(\sqrt{55}\)

Đặt  \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\)  với  \(a,b\in N\)

\(\Rightarrow a+b=6\)

Xét các TH:

a = 0 => b = 6

a = 1 => b = 5

a = 2 => b = 4

a = 3 => b = 3

a = 4 => b = 2

a = 5 => b = 1

a = 6 => b = 0

Từ đó dễ dàng tìm đc x, y

phạm anh thơ
3 tháng 8 2017 lúc 14:35

Biên cưng. Minh Quân đây.