Tìm số tự nhiên n để p=(n-2).(n^2+n-5) là số nguyên tố
Tìm số tự nhiên n để:
(n-2)(n^2+n-5) là số nguyên tố
1. Tìm các số tự nhiên n để \(n^5+n^4+1\)là số nguyên tố.
2. Tìm các số tự nhiên n để \(n^8+n+1\)là số nguyên tố.
Cảm ơn các bạn!
Với \(x=0\Rightarrow n^5+n^4+1=1\left(loai\right)\)
Với \(x=1\Rightarrow n^5+n^4+1=3\left(TM\right)\)
Với \(x\ge2\) ta có:
\(n^5+n^4+1\)
\(=n^5-n^2+n^4-n+n^2+n+1\)
\(=n^2\left(n^3-1\right)+n\left(n^3-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=A\cdot\left(n^2+n+1\right)+B\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(A+B+1\right)\) là hợp số với mọi \(n\ge2\)
Vậy \(n=1\)
Với \(n=0\Rightarrow A=n^8+n+1=1\left(KTM\right)\) vì 1 không là SNT
Với \(n=1\Rightarrow A=n^8+n+1=3\left(TM\right)\) vì 3 là SNT
Với \(n\ge2\) ta có:
\(A=n^8+n+1\)
\(=\left(n^8-n^2\right)+n^2+n+1\)
\(=n^2\left(n^6-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left[\left(n^3\right)^2-1^2\right]+\left(n^2+n+1\right)\)
\(=n^2\left(n^3-1\right)\left(n^3+1\right)+\left(n^2+n+1\right)\)
\(=X\cdot\left(n^3-1\right)+\left(n^2+n+1\right)\)
\(=X\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=X'\left(x^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(X'+1\right)\) là hợp số với \(n\ge2\)
Vậy \(n=1\)
1) Để n5+n4+1 là số chính phương thì \(\orbr{\begin{cases}n^2+n+1=1\\n^5+n^4+1=n^2+n+1\end{cases}}\)
TH1: \(n^2+n+1=1\Leftrightarrow n\left(n+1\right)=0\Leftrightarrow n=0\left(n\inℕ\right)\)
Thử lại sai
TH2: \(n^2+n+1=n^5+n^4+1\)
\(\Leftrightarrow n^5-n^2+n^4-n=0\)
\(\Leftrightarrow n\left(n^3-1\right)\left(n+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}n=1\\n=0\end{cases}}\)
Thử lại thấy n=1 thỏa mãn
Vậy n=1
Tìm số tự nhiên n để (n-3)*(n^2+2n+5) là số nguyên tố
olm ơi trừ điểm nguyễn văn ko bít đi ạ bn ấy trả lời chtt
Tìm các số tự nhiên n để P=3.n^3- 5.n^2+ 3.n- 5 là số nguyên tố?
pt đa thức thành nhân tử
cho 1 cái =1, 1 cách = chính nó. xong
Bài 6. Tìm số tự nhiên n để p = ( n – 2 )( n2 + n – 5 ) là số nguyên tố
Bài 2 Tìm số tự nhiên k để 31k là số nguyên số
Tìm số tự nhiên n để 17 n là số nguyên tố
Bài 2
Xét k=0 thì 31k=0(loại)
Xét k=1 thì 31k=31(chọn)
Xét k>1 thì 31k có 2 ước trở lên(loại)
Vậy k=1
1.Tìm số nguyên n sao cho n^2+3 là số chính phương
2.Tìm số tự nhiên n để n^2+3n+2 là số nguyên tố
3.Tìm số nguyên tố p để p+1 là số chính phương
cho A= (n-2).(2n+5) tìm số tự nhiên n để A là số nguyên tố
THAM KHẢO :
(n là số nguyên tố)
TH1: n-2 =1 và 2n-5 =p
n-2 =1 => n=3 . Thay n=3 vào 2n-5 =2.3-5=1=>A không là số nguyên tố. (LOẠI)
TH2: 2n-5=1 và n-2=p
2n-5=1=>n=3. Thay n=3 vào n-2 =3-2 =1=> A không là số nguyên tố .(không hợp lí)
TH3: 2n-5=-1 và n-2 = - p
2n-5=-1=>n=2 . Thay n=2 vào n-2=1=> A không là số nguyên tố (không hợp lí)
TH4: n-2=-1 và 2n-5 =-p
n-2=-1=>n=1 thay n=1 vào 2n-5 =-3=> A là số nguyên tố (hợp lí)
(n là số nguyên tố)
TH1: n-2 =1 và 2n-5 =p
n-2 =1 => n=3 . Thay n=3 vào 2n-5 =2.3-5=1=>A không là số nguyên tố. (LOẠI)
TH2: 2n-5=1 và n-2=p
2n-5=1=>n=3. Thay n=3 vào n-2 =3-2 =1=> A không là số nguyên tố .(không hợp lí)
TH3: 2n-5=-1 và n-2 = - p
2n-5=-1=>n=2 . Thay n=2 vào n-2=1=> A không là số nguyên tố (không hợp lí)
TH4: n-2=-1 và 2n-5 =-p
n-2=-1=>n=1 thay n=1 vào 2n-5 =-3=> A là số nguyên tố (hợp
Bài 3. Tìm số tự nhiên n để các số:
a) p = (3- 1) x ( n + 1 ) là số nguyên tố;
b) q = (n-2) x (n^2 + n - 5 ) là số nguyên tố.
Câu a:
P = (3 - 1).(n + 1)
P = 2.(n + 1)
P là số nguyên tố khi và chỉ khi n + 1 = 1
n + 1 = 1
n = 1 - 1
n = 0
Vậy với n = 0 thì p = (3 - 1).(n + 1) là số nguyên tố
b; q = (n- 2).(n\(^2\) + n - 5)
Nếu n = 0 thì :
q = (0 - 2).(0 + 0 - 5) = 10 (loại)
Nếu n = 1 thì:
q = (1 - 2)(1 + 1 - 5)
q = -1.(2 - 5)
q = -1.(-3)
q = 3 (nhận)
nếu n = 2 thì
Q = (2 - 2).(4 + 2 - 5) = 0 (loại)
nếu n = 3 thì
q = (3 - 2)(9 + 3 - 5)
q = 1(12 - 5)
q = 7 (nhận)
nếu n ≥ 5 thì n - 2 ≥ 2; n\(^2+n-5\) ≥ 16 + 4 - 5 = 15
q là hợp số (loại)
Vậy n ∈ {1; 3}