Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
19.8A Trà My
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 12 2021 lúc 20:31

Bài 1: 

\(A=x^2+6x+9+x^2-10x+25\)

\(=2x^2+4x+34\)

\(=2\left(x^2+2x+17\right)\)

\(=2\left(x+1\right)^2+32>=32\forall x\)

Dấu '=' xảy ra khi x=-1

Nguyễn Bảo Yến Nhi
Xem chi tiết
Trương Tuấn Kiệt
15 tháng 1 2016 lúc 14:06

a) Ta có: x2 > 0  và  |y - 2| > 0 => ( x+ |y - 2| ) > 0  => ( x+ |y - 2| ) + 3 \(\ge\) 0 + 3

=> A đạt giá trị nhỏ nhất = 3

b) T có: |3y - 6| > 0 và |y + 1| > 0 => |3y - 6| + 2 . |y + 1| > 0 =>  (|3y - 6| + 2 . |y + 1|) - 2015 \(\ge\) 0 - 2015

=> B đạt giá trị nhỏ nhất = - 2015

dream
Xem chi tiết
Trên con đường thành côn...
23 tháng 8 2021 lúc 15:39

undefined

ILoveMath
23 tháng 8 2021 lúc 15:41

a)Ta có: \(x^2\ge0\Rightarrow x^2+3\ge3\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Vậy \(A_{Min}=3 khi x=0\)

b) \(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2-5\ge-5\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy \(B_{Min}=-5khix=-\dfrac{1}{2}\)

c) \(\left(2x-1\right)^{2008}\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)

\(\left(3y-2\right)^{2008}\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow y=\dfrac{2}{3}\)

\(\Rightarrow\left(2x-1\right)^{2008}+\left(3y-2\right)^{2008}\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{3}\end{matrix}\right.\)

Vậy \(C_{Min}=0khix=\dfrac{1}{2}vày=\dfrac{2}{3}\)

Hoàng Trần Trà My
Xem chi tiết
Nguyễn Minh Quang
6 tháng 9 2021 lúc 19:47

ta có 

\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)

Dấu bằng xảy ra khi \(-5\le x\le-2\)

\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)

Dấu bằng xảy ra khi \(x=2\)

\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)

Dấu bằng xảy ra khi \(x\ge2\)

Khách vãng lai đã xóa
Nguyễn Gia Thiện
3 tháng 8 2023 lúc 8:26

Nguyễn Minh Quang sai dấu câu A rồi

 

Nguyễn Ngọc Trình
Xem chi tiết
NguyễnBáĐại
Xem chi tiết
Khanh Gaming
19 tháng 7 2018 lúc 10:21

cần giúp

Pham Tien Dat
28 tháng 10 2018 lúc 16:14

A = \(x^2+9y^2+25+6xy-30y-10x-6xy+26\)

   = \(x^2-10x+25+9y^2-30y+25+1\)

   = \(\left(x-5\right)^2+\left(3y-5\right)^2+1\)

Có : \(\left(x-5\right)^2\ge0\forall x;\left(3y-5\right)^2\ge0\forall y\)

\(\Rightarrow A\ge1\)

Vậy GTNN của A là 1 \(\Leftrightarrow\hept{\begin{cases}x-5=0\\3y-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{5}{3}\end{cases}}}\)

Huyền Trâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2023 lúc 7:50

a: \(\dfrac{2x-2}{3}>=\dfrac{x+3}{6}\)

=>4x-4>=x+3

=>3x>=7

=>x>=7/3

b: (x+3)^2<(x-2)^2

=>6x+9<4x-4

=>2x<-13

=>x<-13/2

c: \(\dfrac{2x-3}{3}-x< =\dfrac{2x-3}{5}\)

=>2/3x-1-x<=2/5x-3/5

=>-11/15x<2/5

=>x>-6/11

Trần Trọng Quang
Xem chi tiết
Yen Nhi
30 tháng 6 2021 lúc 21:50

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

Khách vãng lai đã xóa
Yen Nhi
30 tháng 6 2021 lúc 21:56

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

Khách vãng lai đã xóa
Yen Nhi
30 tháng 6 2021 lúc 22:03

\(5.\)

\(x^2-48x+65\)

\(=\left(x-24\right)^2\ge0\)với \(\forall x\)

\(\left(x-24\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow\left(x-24\right)^2-511\ge-511\)với \(\forall x\)

Vậy \(Max=-511\)khi \(x=24\)

Khách vãng lai đã xóa
Vũ Mạnh Dũng
Xem chi tiết
Võ Đông Anh Tuấn
9 tháng 9 2016 lúc 8:05

Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\)

Quy đồng : \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) và \(2x-3y+z=6\)

Áp dung tính chất của dãy tỉ số bằng nhau , ta có :

  \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{2.9-3.12+20}=\frac{6}{2}=3\)

\(\Rightarrow\begin{cases}\frac{x}{9}=3\Rightarrow x=3.9=27\\\frac{x}{12}=3\Rightarrow x=3.12=36\\\frac{x}{20}=3\Rightarrow x=3.20=60\end{cases}\)

Vậy .......................

 

 

Không Quan Tâm
9 tháng 9 2016 lúc 8:14

Ta có:

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}.\frac{1}{3}=\frac{y}{4}.\frac{1}{3}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\)

\(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{3}.\frac{1}{4}=\frac{z}{5}.\frac{1}{4}\Rightarrow\frac{y}{12}=\frac{z}{20}\left(2\right)\)

Từ (1) và (2); ta được:

      \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

\(\Rightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

\(\Rightarrow x=3.9=27\)

\(\Rightarrow y=3.12=36\)

\(\Rightarrow z=3.20=60\)

 

Trần Nguyễn Bảo Quyên
11 tháng 9 2016 lúc 15:26

     \(Ta\)  \(có:\)

\(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\)

\(\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\)   

     \(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\left(2\right)\)

     Từ  \(\left(1\right)\)  và  \(\left(2\right)\)  \(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)  và  \(2x-3y+z=6\)

     Áp dụng tính chất dãy tỉ số bằng nhau , ta có : 

   \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

\(\Rightarrow\frac{x}{9}=3\Rightarrow x=3.9=27\)

    \(\frac{y}{12}=3\Rightarrow y=3.12=36\)

    \(\frac{z}{20}=3\Rightarrow z=3.20=60\)

Vậy :   \(x=27;y=36;z=60\)