Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Mai Thu
Xem chi tiết
Zeref Dragneel
13 tháng 12 2015 lúc 19:56

Ta có :abcdeg=ab.10000+cd.100+eg

=9999.ab+99.cd+ab+cd+eg

=﴾9999ab+99cd﴿+﴾ab+cd+eg﴿

Vì 9999ab+99cd chia hết cho 11 và ab+cd+eg chia hết cho 11

=>abcdeg chia hết cho 11 

Vậy nếu có ab+cd+egchia hết cho 11 thì abcdeg chia hết cho 11

NGỌC HÂN
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 11 2023 lúc 20:53

a: (x-3)(y+1)=15

=>\(\left(x-3\right)\left(y+1\right)=1\cdot15=15\cdot1=\left(-1\right)\cdot\left(-15\right)=\left(-15\right)\cdot\left(-1\right)=3\cdot5=5\cdot3=\left(-3\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-3\right)\)

=>(x-3;y+1)\(\in\){(1;15);(15;1);(-1;-15);(-15;-1);(3;5);(5;3);(-3;-5);(-5;-3)}

=>(x,y)\(\in\){(4;14);(18;0);(2;-16);(-12;-2);(6;4);(8;2);(0;-6);(-2;-4)}

b: Sửa đề:\(m=1+3+3^2+3^3+...+3^{99}+3^{100}\)

\(m=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)

\(=4+3^2\left(1+3+3^2\right)+3^5\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)

\(=4+13\left(3^2+3^5+...+3^{98}\right)\)

=>m chia 13 dư 4

\(m=1+3+3^2+...+3^{99}+3^{100}\)

\(=1+\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(=1+3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{97}\left(1+3+3^2+3^3\right)\)

\(=1+40\left(3+3^5+...+3^{97}\right)\)

=>m chia 40 dư 1

Nguyễn Minh Đức
Xem chi tiết
Tuấn Nguyễn
30 tháng 9 2018 lúc 21:16

Ta có:

\(1+3+3^2+3^3+...+3^{99}\)

\(\Rightarrow3S=3+3^2+3^3+3^4+...+3^{99}+3^{100}\)

\(\Rightarrow3S-S=\left(3+3^2+3^3+...+3^{100}\right)-\left(1+3+3^2+...+3^{99}\right)\)

\(\Rightarrow2S=3^{100}-1\)

\(\Rightarrow2S+1=3^{100}-1+1=3^{100}\)

\(\Rightarrow2S+1\) là lũy thừa của 3

nguyễn lê gia linh
Xem chi tiết
Lê Minh Phương
Xem chi tiết
Nguyễn Ngọc Anh Minh
16 tháng 5 2022 lúc 7:18

Số cần tìm bớt đi 1 đơn vị được số mới chia hết cho 2; 3; 5; 7

Số mới là

2x3x5x7=210

Số cần tìm là

210+1=211

 

Nguyễn Giang
Xem chi tiết
Lấp La Lấp Lánh
26 tháng 8 2021 lúc 22:21

\(S=1-3+3^2-3^3+...+3^{98}-3^{99}=\left(1-3+3^2-3^3\right)+3^4\left(1-3+3^3-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)=\left(-20\right)+3^4.\left(-20\right)+...+3^{96}.\left(-20\right)=\left(-20\right)\left(1+3^4+...+3^{96}\right)⋮20\)

Nguyễn Lê Phước Thịnh
26 tháng 8 2021 lúc 22:23

Ta có: \(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)\)

\(=-20\cdot\left(1+...+3^{96}\right)⋮20\)

luc dao tien nhan
Xem chi tiết
Lê Duy Khang
14 tháng 2 2016 lúc 12:22

Ta có : 

a=x459y chia cho 2 và 5 đều dư 1 => y = 1 hoặc 6

Nếu y =6 thì a sẽ chia hết cho 2

=> y = 1

a = x4591 chia cho 9 dư 1

=> x + 4 + 5 + 9 + 1 chia cho 9 dư 1

= x + 19 chia cho 9 dư 1

=> x = 9

Vậy, a = 94591

 

Nguyễn Hữu Đạt
27 tháng 6 2017 lúc 16:13

Đáp án là 94591 nha!!!

đặng đức khảm
24 tháng 7 2017 lúc 9:42

a= 94591

Nguyễn Thị Hạnh Linh
Xem chi tiết
Hoàng Nguyễn
Xem chi tiết