Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tung Nguyễn
Xem chi tiết
Khanh Lê
20 tháng 7 2016 lúc 22:43

a)\(ĐKXĐ\Leftrightarrow\begin{cases}\sqrt{x}\ge0\\\sqrt{x}-1\ne0\end{cases}\Leftrightarrow\begin{cases}x\ge0\\x\ne1\end{cases}}\)

\(A=\frac{\sqrt{x}\cdot\left(\sqrt{x}+2\right)+1\cdot\left(\sqrt{x}-1\right)-3\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\)

\(=\frac{x+2\sqrt{x}+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)

b)\(S=A\cdot B\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+3}{\sqrt{x}+1}\)

\(=\frac{\sqrt{x}+3}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+2+1}{\sqrt{x}+2}\)

\(=1+\frac{1}{\sqrt{x}+2}\)

Để S đạt GTLN thì \(\frac{1}{\sqrt{x}+2}\)  đạt GTLN 

\(\frac{1}{\sqrt{x}+2}\) đạt GTLN \(\Leftrightarrow\sqrt{x}+2\) đạt GTNN 

GTNN \(\sqrt{x}+2\) là 2 \(\Leftrightarrow x=0\)

Vậy GTLN của S là \(\frac{3}{2}\Leftrightarrow x=0\)

Khanh Lê
20 tháng 7 2016 lúc 22:46

ĐKXĐ \(\Leftrightarrow\)\(\sqrt{x}\ge0\) và \(\sqrt{x}-1\ne0\)

\(\Leftrightarrow x\ge0\) và \(x\ne1\)

Tung Nguyễn
23 tháng 7 2016 lúc 23:27

SAO KHÔNG XEM ĐƯỢC VẬY TOÀN LEFT RIGHT FRAC CÁI GÌ CHẢ HIỂU NỔI 

 

lê thanh tùng
Xem chi tiết
Ngọc Vĩ
20 tháng 7 2016 lúc 21:54

a/ \(A=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)   \(\left(ĐK:x\ge0;x\ne1\right)\)

   \(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

      \(=\frac{x+2\sqrt{x}+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

     \(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)

Cao Chi Hieu
Xem chi tiết
Sofia Nàng
Xem chi tiết
phương nguyễn hoàng
Xem chi tiết
Trang Thư Nguyễn Ngọc
Xem chi tiết
Nhi Nhí Nhảnh
Xem chi tiết
Phạm Thị Thùy Linh
30 tháng 11 2019 lúc 20:34

\(a,đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

\(b,\)\(A=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right).\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)

\(=\left(1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right).\left(1-\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)

\(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)

\(c,A_{max}\Leftrightarrow1-x\)lớn nhất \(\Rightarrow x\)nhỏ nhất

Mà \(x\ge0\)\(\Rightarrow x\)nhỏ nhất \(\Leftrightarrow x=0\)

\(\Rightarrow A_{max}=1\Leftrightarrow x=0\)

Khách vãng lai đã xóa
Quang
Xem chi tiết
Bùi Nam ANH
1 tháng 5 2023 lúc 15:44

Ta có :A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\) -\(\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\) 

=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)-2

=\(\dfrac{-\sqrt{x}}{\sqrt{x}+1}\)

thay vào A=\(\dfrac{-2}{3}\)

b)

A=-1+\(\dfrac{1}{\sqrt{x}+1}\) \(\ge\) -1+\(\dfrac{1}{1}\)=1(vì \(\sqrt{x}\)\(\ge\) 0)

Dấu bằng xẩy ra\(\Leftrightarrow\) x=0

Bùi Nam ANH
1 tháng 5 2023 lúc 15:48

chỗ đó cho thêm x-1 nha

đấu >= thay thành <= rùi nhân thêm x-1>=-1 nữa là lớn nhất bằng 0

Nguyễn Ngọc Linh
Xem chi tiết
Nguyễn Ngọc Linh
21 tháng 10 2020 lúc 18:45

Giúp mình với mình đang cần gấp. Thk you các pạn

Khách vãng lai đã xóa