Cho a và b là hai số tự nhiên. Biết a chia cho 4 dư 2; b chia cho 4 dư 2.
Tích ab chia cho 4 dư bao nhiêu?
Dư 0
Dư 2
Dư 1
1. Cho hai số tự nhiên a và b, biết a chia cho 6 dư 2 và b chia cho 6 dư 3. Chứng minh rằng ab chia hết cho 6
2. Cho a và b là hai số tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3. Chứng minh rằng ab chia cho 5 dư 1
1) a chia 6 dư 2 => a= 6k+2
b chia 6 dư 3 => b= 6k+3
=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6
2) a= 5k+2; b=5k+3
=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)
=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1
=> ab chia 5 dư 1
Cho a và b là hai số tự nhiên . Biết a chia 4 dư 2 và b chia 4 dư 1 . Tìm số dư khi ab chia 4 giải chi tiết giùm nha cần gấp
Đặt a=4m+1, b=4n+2(m,n\(\in\)N)
=>ab=(4m+1)(4n+2)
= 16mn+8m+4n+2
Ta thấy 16mn+8m+4n chia hết cho 4
=> ab:14 dư 2
Cho a và b là hai số tự nhiên. Biết a chia cho 3 dư 2 và b chia cho 3 dư 1. Tích a.b chia cho 3 có số dư là:
A. –1
B. 0
C. 1
D. 2
1) Cho 2 số tự nhiên a và b, biết 2 chia cho 6 dư 2 và b chia cho 6 dư 3. . Chứng minh rằng ab chia hết cho 6.
2) Cho a và b là 2 sớ tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1.
3) Cho 2 số tự nhiên a và b, biết a chia cho 6 dư 3 và ab chia hết cho 6. . Hỏi b chia cho 6 có số dư là bao nhiêu? Chứng minh.
4) Chứng minh rằng: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với n là số tự nhiên.
5) Chứng minh rằng với mọi số nguyên n biểu thức (n - 1) (n + 4) - (n - 4) (n + 1) luôn chia hết cho 6.
Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6
a, Tìm hai số tự nhiên a và b biết tổng BCNN và ƯCLN của chúng là 15
b, Tìm số tự nhiên nhỏ nhất biết rằng số đó chia cho 9 dư 5, chia cho 7 dư 4 và chia 5 thì dư 3
cho a và b là hai số tự nhiên biết b>a. a chia 4 dư 3. CM b2-a2 chia hết cho 4
đề hài vl ko biết b thì chứng minh = mắt à
A số chia 4 dư 3 nên a là số lẻ
Mà mọi số lẻ bình phương chia 4 đều dư 1
nên a bình phương chia 3 dư 1
b bình phương
nếu b chẵn thì b bình phương chia hết cho 4
\(a^2-b^2:4\) dư 1
nếu b lẻ thì bình phương chia 4 dư 1
\(a^2-b^2⋮4\)
Chỉ chứng minh được \(a^2-b^2⋮4\) với b lẻ
Cho a và b là hai số tự nhiên. Biết a chia cho 5 dư 1; b chia cho 5 dư 4. Chứng minh ab + 1 chia hết cho 5.
Vì a chia 5 dư 1 nên đặt a = 5x + 1 (x Î N); b chia 5 dư 4 nên đặt b = 5y + 4(y Î N).
Ta có a.b + 1 = (5x + 1)(5y + 4) + 1 = 25xy + 20x + 5y + 5.
Þ ab + 1 = 5(5xy + 4x + y + 1) ⋮ 5 (đpcm).
Cho a và b là hai số tự nhiên. Biết a chia cho 5 dư 1, b chia cho 5 dư 4. Chứng minh ab+1 chia hết cho 5.
a chia 5 dư 1 nên \(a=5m+1\left(m\inℕ\right)\)
b chia 5 dư 4 nên \(b=5n+4\left(n\inℕ\right)\)
Do đó \(ab=\left(5m+1\right)\left(5n+4\right)+1\)
\(ab=25mn+20m+5n+4+1\)
\(ab=25mn+20m+5n+5⋮5\)
Ta có đpcm
A và b là hai số tự nhiên. biết A chia 5 dư 1, B chia cho 5 dư 4. Chứng minh ab + 1 chia hết cho 5
Đặt A=5k+1, B=5k+4 \(\left(k\in N\right)\)
\(\Rightarrow ab+1=\left(5k+1\right)\left(5k+4\right)+1=25k^2+25k+5=5\left(5k^2+5k+1\right)⋮5\left(đpcm\right)\)
\(ab+1=\left(5k+1\right)\left(5k+4\right)+1\)
\(=25k^2+20k+5k+4+1\)
\(=25k^2+25k+5⋮5\)