Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
•Čáøツ
Xem chi tiết
Nguyễn Linh Chi
21 tháng 6 2020 lúc 10:23

1) \(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt{\frac{a}{16}.\frac{1}{a}}+\frac{15.4}{16}=\frac{17}{4}\)

Dấu "=" xảy ra <=> a = 4 

Vậy min A = 17/4 tại a = 4

2) \(B=3x+\frac{16}{x^3}=x+x+x+\frac{16}{x^3}\ge4\sqrt[4]{x.x.x.\frac{16}{x^3}}=8\)

Dấu "=" xảy ra <=> x = 2

Vậy min B = 8 tại x = 2

3) 0<x<2 tìm min \(C=\frac{9x}{2-x}+\frac{2}{x}\)

Ta có: \(C=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x}{2-x}+\frac{2-x}{x}+1\ge2\sqrt{\frac{9x}{2-x}.\frac{2-x}{x}}+1=7\)

Dấu "=" xảy ra <=> x = 1/2  thỏa mãn

Vậy min C = 7 đạt tại x = 1/2

Khách vãng lai đã xóa
•Tuấn Goldツ
Xem chi tiết
KCLH Kedokatoji
21 tháng 6 2020 lúc 10:51

https://olm.vn/hoi-dap/detail/258469425824.html . Bạn tham khảo link này

Khách vãng lai đã xóa
Phan Nghĩa
10 tháng 7 2020 lúc 9:26

Áp dụng BĐT Cauchy cho 2 số không âm ta có : 

\(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt[2]{\frac{a}{16}.\frac{1}{a}}+\frac{60}{16}=\frac{17}{4}\)

Đẳng thức xảy ra khi và chỉ khi \(a=4\)

Vậy \(Min_A=\frac{17}{4}\)khi \(a=4\)

Khách vãng lai đã xóa
Phan Nghĩa
10 tháng 7 2020 lúc 9:29

Ta có : \(B=\frac{3x^4}{x^3}+\frac{16}{x^3}=3x+\frac{16}{x^3}=x+x+x+\frac{16}{x^3}\)

Áp dụng Bất đẳng thức Cauchy cho 4 số không âm ta có : 

\(x+x+x+\frac{16}{x^3}\ge4\sqrt[4]{x.x.x.\frac{16}{x^3}}=4\sqrt[4]{16}=8\)

Đẳng thức xảy ra khi và chỉ khi \(x=2\)

Vậy \(Min_B=8\)khi \(x=2\)

Khách vãng lai đã xóa
Đinh Thị Ngọc Anh
Xem chi tiết
Thức Nguyễn Văn
Xem chi tiết
Phạm Thế Mạnh
3 tháng 1 2016 lúc 13:41

1.\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{x^2.1000.1000}{x^2}}\)
\(\Rightarrow N\ge300\)
Dấu "=" xảy ra \(\Leftrightarrow x^3=1000\Leftrightarrow x=10\)
2.\(P=\left(5x+\frac{12}{x}\right)+\left(3y+\frac{16}{y}\right)\ge2\sqrt{60}+2\sqrt{48}=4\sqrt{15}+8\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow5x=\frac{12}{x};3y=\frac{16}{y}\Leftrightarrow x=\sqrt{\frac{12}{5}};y=\frac{4\sqrt{3}}{3}\)

\(\)

phan tuấn anh
3 tháng 1 2016 lúc 11:01

phải là \(\le12\)

Danh Vô
Xem chi tiết
_ɦყυ_
15 tháng 7 2020 lúc 23:40

Ta có: x2+1≥(x+1)2/2, y2+1≥(y+1)2

P+2≥ \(\frac{\left(x+1\right)^2}{2}+\frac{\left(y+1\right)^2}{2}+4.\frac{4}{\sqrt{\left(x+1\right)\left(y+1\right)}}\)

Theo bđt Cosy ta có

P+2≥\(\frac{\left(x+1\right)^2.\left(y+1\right)^2.4^4}{2.2.\left(x+1\right)^2.\left(y+1\right)^2}\)=4^3=64.

=>P≥62

Vậy GTNN của P là 62 tại x=y=1.

(Chú ý điều kiện x,y≥0)

Khách vãng lai đã xóa
Nguyễn Hoàng Phúc
Xem chi tiết
Seu Vuon
15 tháng 3 2015 lúc 15:11

\(\frac{x^2+15x+16}{3x}=\frac{x^2-8x+16+23x}{3x}=\frac{\left(x-4\right)^2}{3x}+\frac{23}{3}\ge\frac{23}{3}\), với mọi x >0

Dấu = xảy ra <=> x =4

Cách khác :  \(\frac{x^2+15x+16}{3x}=\frac{x}{3}+\frac{15}{3}+\frac{16}{3x}\)

Áp dụng bđt Cauchy với x/3 và 16/3x ta có :\(\frac{x}{3}+\frac{16}{3x}\ge2\sqrt{\frac{x}{3}.\frac{16}{3x}}=\frac{8}{3}\Rightarrow\frac{x}{3}+\frac{16}{3x}+\frac{15}{3}\ge\frac{23}{3}\)

Dấu = xảy ra <=> x/3 = 16/3x <=> 3x2 = 48 <=> x =4

tống thị quỳnh
Xem chi tiết
Nagato
Xem chi tiết
An Vy
Xem chi tiết
Trần Phúc Khang
31 tháng 7 2019 lúc 19:22

Ta có \(A=2x+3y+5z+\frac{1}{x}+\frac{8}{y}+\frac{16}{z}\)

           \(=\left(x+y+z\right)+\left(x+\frac{1}{x}\right)+\left(2y+\frac{8}{y}\right)+\left(4z+\frac{16}{z}\right)\)

           \(\ge5+2+2\sqrt{2.8}+2\sqrt{4.16}=31\)

MinA=31 khi a=1; b=c=2