Min P = \(x^2+\frac{16}{x}\), x>0 bằng :
b1 Cho \(a\ge4\) tìm min \(A=a+\frac{1}{a}\)
B2 cho a>0 tìm min \(B=\frac{3x^4+16}{x^3}\)
B3 0<x<2 tìm min \(C=\frac{9x}{2-x}+\frac{2}{x}\)
1) \(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt{\frac{a}{16}.\frac{1}{a}}+\frac{15.4}{16}=\frac{17}{4}\)
Dấu "=" xảy ra <=> a = 4
Vậy min A = 17/4 tại a = 4
2) \(B=3x+\frac{16}{x^3}=x+x+x+\frac{16}{x^3}\ge4\sqrt[4]{x.x.x.\frac{16}{x^3}}=8\)
Dấu "=" xảy ra <=> x = 2
Vậy min B = 8 tại x = 2
3) 0<x<2 tìm min \(C=\frac{9x}{2-x}+\frac{2}{x}\)
Ta có: \(C=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x}{2-x}+\frac{2-x}{x}+1\ge2\sqrt{\frac{9x}{2-x}.\frac{2-x}{x}}+1=7\)
Dấu "=" xảy ra <=> x = 1/2 thỏa mãn
Vậy min C = 7 đạt tại x = 1/2
b1 Cho x>4 tìm Min \(A=a+\frac{1}{a}\)
b2 Cho x>0 tìm Min \(B=\frac{3x^4+16}{x^3}\)
B3 0<x<2 tìm Max \(C=\frac{3}{1-x}+\frac{4}{x}\)
https://olm.vn/hoi-dap/detail/258469425824.html . Bạn tham khảo link này
Áp dụng BĐT Cauchy cho 2 số không âm ta có :
\(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt[2]{\frac{a}{16}.\frac{1}{a}}+\frac{60}{16}=\frac{17}{4}\)
Đẳng thức xảy ra khi và chỉ khi \(a=4\)
Vậy \(Min_A=\frac{17}{4}\)khi \(a=4\)
Ta có : \(B=\frac{3x^4}{x^3}+\frac{16}{x^3}=3x+\frac{16}{x^3}=x+x+x+\frac{16}{x^3}\)
Áp dụng Bất đẳng thức Cauchy cho 4 số không âm ta có :
\(x+x+x+\frac{16}{x^3}\ge4\sqrt[4]{x.x.x.\frac{16}{x^3}}=4\sqrt[4]{16}=8\)
Đẳng thức xảy ra khi và chỉ khi \(x=2\)
Vậy \(Min_B=8\)khi \(x=2\)
1. Cho a, b là các hằng số dương. Tìm min A=x+y biết x>0, y>0; \(\frac{a}{x}+\frac{b}{y}=1\)
2.Tìm \(a\in Z\), a#0 sao cho max và min của \(A=\frac{12x\left(x-a\right)}{x^2+36}\)cũng là số nguyên
3. Cho \(A=\frac{x^2+px+q}{x^2+1}\) . Tìm p, q để max A=9 và min A=-1
4. Tìm min \(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\) với x,y,z>0 ; \(x^2+y^2+z^2\le3\)
5. Tìm min \(P=3x+2y+\frac{6}{x}+\frac{8}{y}\) với \(x+y\ge6\)
6. Tìm min, max \(P=x\sqrt{5-x}+\left(3-x\right)\sqrt{2+x}\) với \(0\le x\le3\)
7.Tìm min \(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\) với x>0, y>0; x+y=1
8.Tìm min, max \(P=x\left(x^2+y\right)+y\left(y^2+x\right)\) với x+y=2003
9. Tìm min, max P = x--y+2004 biết \(\frac{x^2}{9}+\frac{y^2}{16}=36\)
10. Tìm mã A=|x-y| biết \(x^2+4y^2=1\)
1.Cho x>0. Tìm Min của N=\(\frac{x^3+2000}{x}\)
2. Cho x>0, y>0, x+y\(\ge\)0. Tìm Min của P=\(5x+3y+\frac{12}{x}+\frac{16}{y}\)
3. Cho x, y, z\(\ge\)0, thỏa mãn x+y+z\(\ge\)12. Tìm Min của A=\(\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\)
1.\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{x^2.1000.1000}{x^2}}\)
\(\Rightarrow N\ge300\)
Dấu "=" xảy ra \(\Leftrightarrow x^3=1000\Leftrightarrow x=10\)
2.\(P=\left(5x+\frac{12}{x}\right)+\left(3y+\frac{16}{y}\right)\ge2\sqrt{60}+2\sqrt{48}=4\sqrt{15}+8\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow5x=\frac{12}{x};3y=\frac{16}{y}\Leftrightarrow x=\sqrt{\frac{12}{5}};y=\frac{4\sqrt{3}}{3}\)
\(\)
Cho x;y ≥ 0
Tìm Min P = \(x^2+y^2+\frac{16}{\sqrt{\left(x+1\right)\left(y+1\right)}}\)
Ta có: x2+1≥(x+1)2/2, y2+1≥(y+1)2
P+2≥ \(\frac{\left(x+1\right)^2}{2}+\frac{\left(y+1\right)^2}{2}+4.\frac{4}{\sqrt{\left(x+1\right)\left(y+1\right)}}\)
Theo bđt Cosy ta có
P+2≥\(\frac{\left(x+1\right)^2.\left(y+1\right)^2.4^4}{2.2.\left(x+1\right)^2.\left(y+1\right)^2}\)=4^3=64.
=>P≥62
Vậy GTNN của P là 62 tại x=y=1.
(Chú ý điều kiện x,y≥0)
Tìm Min của biểu thức \(\frac{x^2+15x+16}{3x}\) với x> 0
\(\frac{x^2+15x+16}{3x}=\frac{x^2-8x+16+23x}{3x}=\frac{\left(x-4\right)^2}{3x}+\frac{23}{3}\ge\frac{23}{3}\), với mọi x >0
Dấu = xảy ra <=> x =4
Cách khác : \(\frac{x^2+15x+16}{3x}=\frac{x}{3}+\frac{15}{3}+\frac{16}{3x}\)
Áp dụng bđt Cauchy với x/3 và 16/3x ta có :\(\frac{x}{3}+\frac{16}{3x}\ge2\sqrt{\frac{x}{3}.\frac{16}{3x}}=\frac{8}{3}\Rightarrow\frac{x}{3}+\frac{16}{3x}+\frac{15}{3}\ge\frac{23}{3}\)
Dấu = xảy ra <=> x/3 = 16/3x <=> 3x2 = 48 <=> x =4
Tìm min,max của P=xyz biết A= \(\frac{8-x^2}{16+x^4}+\frac{8-y^2}{16+y^4}+\frac{8-z^2}{16+z^4}\ge0.\)
Cho a;b;c >0 thỏa mã \(a+b+c\le3\)Tìm min P \(=\left(3+\frac{1}{a}+\frac{1}{b}\right)\left(3+\frac{1}{b}+\frac{1}{c}\right)\left(3+\frac{1}{c}+\frac{1}{a}\right)\)
Cho x > 0. Tìm Min A = \(\frac{3x^4+16}{x^3}\)
Cho x,y,z>0 và x+y+z=5 Tìm min A =\(2x+3y+5z+\frac{1}{x}+\frac{8}{y}+\frac{16}{z}\)
Ta có \(A=2x+3y+5z+\frac{1}{x}+\frac{8}{y}+\frac{16}{z}\)
\(=\left(x+y+z\right)+\left(x+\frac{1}{x}\right)+\left(2y+\frac{8}{y}\right)+\left(4z+\frac{16}{z}\right)\)
\(\ge5+2+2\sqrt{2.8}+2\sqrt{4.16}=31\)
MinA=31 khi a=1; b=c=2