Cho A=\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100},CMR:\frac{3}{5}< A< \frac{31}{40}\)
Cho A = \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
CMR:
1, A = \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\)
2, \(\frac{25}{75}+\frac{25}{100}< A< \frac{25}{51}+\frac{25}{75}\)
\(cmr;\frac{1}{1\times2}+\frac{1}{3\times4}+\frac{1}{5\times6}+.....+\frac{1}{99\times100}=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+.....+\frac{1}{100}\)
ai làm đung mình tick cho
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
\(CMR:\) \(1-\frac{1}{2}+\frac{1}{3}-...+\frac{1}{99}-\frac{1}{100}=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
Biến đổi vp của đẳng thức :
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{50}\)
\(=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}-2\left[\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right]\)
\(=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{200}\)
CMR :
\(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+\frac{1}{100}\)
\(\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+...+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+...+\frac{1}{100}-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)(ĐPCM)
\(\frac{1}{51}+\frac{1}{52}+......\frac{1}{100}\)
Cho \(A=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{99\cdot100}\)
Chứng minh rằng:
a) \(A=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
b) \(\frac{7}{12}< A< \frac{5}{6}\)
\(choA=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{99\cdot100};B=\frac{1}{51\cdot100}+\frac{1}{52\cdot99}+...+\frac{1}{52\cdot99}+\frac{1}{100\cdot51}\)
\(a=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
b=\(\frac{2011}{51}+\frac{2011}{52}+\frac{2011}{53}+...+\frac{2011}{100}\)
cmr:\(\frac{a}{b}\)là 1 số nguyên
a=\(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{100}=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)\(=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)=\frac{1}{51}+...+\frac{1}{100}\)
=>b/a=2011
hình như đề : CMR : \(\frac{b}{a}\)là 1 số nguyên
Ta có :
\(a=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(a=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(a=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(a=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(a=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(a=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(b=\frac{2011}{51}+\frac{2011}{52}+\frac{2011}{53}+...+\frac{2011}{100}\)
\(b=2011.\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)\)
\(\Rightarrow\frac{b}{a}=\frac{2011.\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}}=2011\)là 1 số nguyên ( đpcm )
Sửa đề: Chứng minh \(\frac{b}{a}\)là một số nguyên
Ta có: \(a=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
Áp dụng quy tắc dấu ngoặc vào tổng đại số trên , và theo quy luật của tổng đại số.ta có:
\(a=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
Tiếp tục phân tích , ta được:
\(a=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
Ta có: \(\frac{b}{a}=\frac{\frac{2011}{51}+\frac{2011}{52}+\frac{2011}{53}+...+\frac{2011}{100}}{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}}\)
\(=\frac{2011\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}}=\frac{2011}{1}=2011\)là một số nguyên (đpcm)
cho A=\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
chung minh rang
a) A =\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\)
b) \(\frac{25}{75}+\frac{25}{100}< A< \frac{25}{51}+\frac{25}{75}\)
Cho \(A=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+....+\frac{1}{99\cdot100}\)
\(B=\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+.....+\frac{1}{100}\)
Khi đó A-b=????