Cho tam giác ABC cân tại A.Trên tia đối của tia AB và AC lấy D và E sao cho AD = AE. Vẽ trung tuyến AM của tam giác ABC. Tia đối của tia AM cắt DE tại H
a. Chứng minh EB = DC
b. Chứng minh AHD = 900
cho tam giác ABC cân tại A,trên tia đối của tia AB và AC lấy D và E sao cho AD=AE . vẽ trung tuyến AM của tam giác ABC. tia đối của tia AM cắt DE tại H.
a. chứng minh ED=DC
b.chứng minh tam giác AHD=900
Cho tam giác ABC vuông tại A, AB<AC. Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Trên tia đối của tia AB lấy điểm E sao cho AE=AC.
a, Chứng Minh: BC=DE
b, Chứng Minh: Tâm giác ABD vuuong cân và BD//CE
c, Kẻ đường cao AH của tam giác ABC, tia HA cắt cạnh DE tại M. Từ A vẽ đường thẳng vuông góc với CM tại K, đường này cắt BC tại N. Chứng minh: NM//AB
d, Chứng minh: AM=1/2 DE
làm giúp mình phần c và d
Cho tam giác vuông ABC, vuông tại A (AB<AC). Trên tia đối của tia AC lấy ddiemr D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC.
a) Chứng minh: BC = DE
b) Chứng minh: tam giác ABD vuông cân và BD//CE.
c) Kẻ đường cao AH của tam giác ABC tia AH cắt cạnh DE tại M, từ A kẻ đường vuông góc CM tại K, đường thẳng này cắt BC tại N. Chứng minh: NM // AB.
d) Chứng minh: AM = DE/2.
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H, trên tia đối của tia HA lấy điểm D sao cho điểm HD=HA. Trên tia đối của tia CB lấy điểm E sao cho CE=CB
a/ chứng minh AC=DC
b/ chứng minh tam giác ACE = tam giác DCE
c/ Đường thẳng AC cắt DE tại K. Chưng minh AB+BC>2DK
Cho tam giác ABC cân tại A.Vẽ trung tuyến AM
a)Biết AB= 13cm ,BC= 10cm.Tính AM
b)Vẽ đường trung trực của đoạn thẳng AC cắt AC tại E và cắt CB tại F. AM cắt EF tại I . Chứng minh rằng tam giác ACF cân và CI ⊥ AF
c)Trên tia đối của tia AF lấy điểm D sao cho AD=BF.Chứng minh rằng : △CFD cân
d)Tìm điều kiện của △ABC để CD⊥CF
a, AM là đường trung tuyến của tam giác cân ABC => BM=MC=1/2 BC = 5
AM là đường trung tuyến của tam giác cân ABC nên AM cũng đồng thời là đường cao trong tam giác này
=> góc AMB = 90độ
Áp dụng định lí Pytago vào tam giác vuông ABM tại M có: \(AM^2=AB^2-BM^2=13^2-5^2=12^2\Rightarrow AM=12\\ \)
b, EF là trung trực AC => FE vuông góc AC và R là trung điểm AC
Hay góc FEC=90độ và EC=EA
Xét tam giác FEC và FEA có:
FE _ cạnh chung
góc FEC = góc FEA = 90độ
EC=EA
=> tg FEC = tg FEA (c-g-c) => FC=FA => tg FAC cận tại F
Xét tg FAC có FE, AM là 2 đường cao trong tam giác và chúng cắt nhau tại I => I là trực tâm tg FAC => CI vuong góc À
Cho tam giác ABC cân tại A.Vẽ trung tuyến AM
a)Biết AB= 13cm ,BC= 10cm.Tính AM
b)Vẽ đường trung trực của đoạn thẳng AC cắt AC tại E và cắt CB tại F. AM cắt EF tại I . Chứng minh rằng tam giác ACF cân và CI ⊥ AF
c)Trên tia đối của tia AF lấy điểm D sao cho AD=BF.Chứng minh rằng : △CFD cân
d)Tìm điều kiện của △ABC để CD⊥CF
Cho tam giác ABC cân tại A.Vẽ trung tuyến AM
a)Biết AB= 13cm ,BC= 10cm.Tính AM
b)Vẽ đường trung trực của đoạn thẳng AC cắt AC tại E và cắt CB tại F. AM cắt EF tại I . Chứng minh rằng tam giác ACF cân và CI ⊥ AF
c)Trên tia đối của tia AF lấy điểm D sao cho AD=BF.Chứng minh rằng : △CFD cân
d)Tìm điều kiện của △ABC để CD⊥CF
Cho tam giác ABC vuông tại A (AB < AC). Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC.
1) Chứng minh rằng : BC = DE.
2) Chứng minh rằng : Tam giác ABD vuông cân và BD // CE.
3) Vẽ đường cao AH của tam giác ABC, tia AH cắt cạnh DE tại M. Từ A vẽ đường vuông góc với CM tại K, đường thẳng này cắt BC tại N.
Chứng minh rằng : MN // AB và AM = 1/2 DE.
1) Xét ΔCAB vuông tại A và ΔEAD vuông tại A có
AB=AD(gt)
AC=AE(gt)
Do đó: ΔCAB=ΔEAD(hai cạnh góc vuông)
Suy ra: BC=DE(hai cạnh tương ứng)
2) Xét ΔABD có AB=AD(gt)
nên ΔABD cân tại A(Định nghĩa tam giác cân)
Xét ΔABD cân tại A có \(\widehat{BAD}=90^0\)(gt)
nên ΔABD vuông cân tại A(Định nghĩa tam giác vuông cân)